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Abstract: The work is devoted to study 2D pressure driven rarefied gas flow in a 

microchannel having an elastic obstacle. The elastic obstacle is clamped at the 

bottom channel wall and its length is half of the channel height. The gas flow is 

simulated by Direct Simulation Monte Carlo (DSMC) method applying the advanced 

Simplified Bernoulli Trial (SBT) collision scheme. The elastic obstacle is modelled 

as geometrically nonlinear Euler Bernoulli beam. A reduced 3 modes reduction 

model of the beam is created. The influence of the gas flow on the beam vibration is 

studied, considering the linear and nonlinear beam theories.  
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1. Introduction 

One of the most important coupled problem in mechanics is the Fluid Structures 

Interaction (FSI). The interaction between different fluid flows and rigid or elastic 

structures can be observed in many technological applications in civil engineering, 

mechanical engineering, energetics, etc. Many aspects of the FSI are deeply 

considered in the Paidoussis’ book [1]. 

In this book and in many others studies, problems related to large structures are 

treated. In the past decades, however, with the development of the micro-

technologies, the problems of the FSI at micro level became very important. This fact 

leads to the increasing number of studies in this field. At micro level, the phenomena 

that arise in microfluidic differ essentially from the conventional flows at 

macroscales. In many microsystems as Micro-ElectroMechanical Systems (MEMS), 

micro machines, flow sensors, etc. the flow interacts with deformable structures. The 

design of such systems requires theoretical modelling of the dynamic behaviour of 

the flexible structures in their interaction with the fluid. 
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Many studies considering the interaction of a fluid with structures at micro level 

are connected with the modelling of the FSI in Atomic Force Microscopes (AFM). 

In [2] a simulation of the behaviour of AFM operating in liquid was studied by a 

lumped-parameter model of the beam combined with a transient Navier-Stokes 

solver. The beam is modelled in a very simple way as a harmonic oscillator. For the 

analysis of the fluid-structure interaction, the drag force is treated as a linear function 

of the velocity, which allows the system to be simplified to the classical mass-

damper-spring system. The equations of motion have been solved simultaneously 

with the time-dependent flow field. 

The behaviour of the cantilever in AFM is considered again in [3]. The effect of 

fluid loading is analysed by a systems/feedback approach. The thermal response is 

analysed as well. 

Interesting results are presented in the works of G r e e n  and S a d e r  [4] and 

C o r n e l i s, V a n  and S a d e r  [5]. Authors have studied the influence of the fluid 

flow on frequency response functions of cantilevered beams immersed in viscous 

fluids. The linear Euler-Bernoulli beam theory is used to describe the structure 

behaviour. The influence of the fluid on the beam vibration is taken into account as a 

hydrodynamic force, which is added to another driving force. In [4] the thermal 

driving is considered while in [5] a thermal driving force and a driving force obtained 

from the solution of the linearized Navier-Stokes equation is considered. Flexural and 

torsional modes of vibrations are considered separately. The studies show that the 

higher order modes of the cantilever can be significantly affected by the induced 

three-dimensional nature of the flow field around the cantilever.  

In [6] a FSI Algorithm is presented using compressible continuum fluid model, 

such that the equivalent of first-order slip velocity and temperature jump boundary 

conditions are achieved at fluid-solid boundaries. The FSI Algorithm uses a three-

dimensional, unsteady, continuum based Eulerian-Lagrangian methodology. The 

fluids are modelled using ICE (Implicit, Continuous fluid, Eulerian) model and solid 

materials are modelled by the Material-Point-Method (MPM). The transient, 

thermal/structural response of a damped-oscillatory three-dimensional finite cylinder 

subject to an impulsively started uniform, rarefied flow is studied. 

The interaction between a microchannel with a deformable wall and the fluid 

that flows within it has been investigated experimentally and numerically fluid-

structural in [7]. Water and sucrose syrup have been employed as working fluid in 

experiments while numerical calculations used incompressible continuum fluid 

model. Authors have compared displacement profiles of the small deformable region 

measured experimentally with that predicted using a two- and three-dimensional 

finite element model that incorporates coupling between the thin wall and the fluid. 

They report an excellent agreement between experiments and numerical results. 

An attempt to study the interaction between an elastic structure and fluid flow 

by a strong coupling of the equations is made in [8]. By using the finite difference 

method, authors have developed a user program for a plate vibration that they have 

connected with 3D Flow commercial program. Then they have studied the dynamic 

behaviour of the MEMS diaphragm drop ejector. 
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In [9] an approach similar to the one in [8] for FSI modelling is presented. 

Structural dynamics has been solved by a user defined finite element method solver 

coupled with the commercial Computational Fluid Dynamics (CFD) solver FLUENT 

based on a coupling approach, i.e., by allowing the information to be exchanged at 

the end of each time step. During the solution, the interface motion is transferred by 

using the moving mesh capability of the CFD solver. 

In the references cited, the beam model is usually a simple one and does not 

include nonlinearities. The second and most important fact is that the interaction of 

rarefied gas (which is often the case in MEMS) with the elastic structure is not 

considered using molecular approach. For a gas model description of MEMS, the 

Knudsen number Kn (the ratio of mean free path of molecules to specific geometrical 

dimension) is a key dimensionless parameter. In such devices, the Knudsen number 

at standard temperature and pressure is large due to the small characteristic size. 

Continuum approach (Navier-Stokes equations) is applicable only at small Knudsen 

numbers and under special boundary conditions, taking into account small deviations 

from local equilibrium. For a slip-flow regime within 0.001< Kn<0.1 Navier-Stokes 

(NS) equations are applicable to the flow, but slippage on the border between the gas 

and the surface of the body should be taken into account, while for 0.1<Kn<10.0 the 

NS equations are no longer valid. 

In the present work, a gas flow in a microchannel with an elastic thin cantilever 

clamped to the bottom of the microchannel is considered for Kn = 0.05 and different 

pressure ratios. The geometrically nonlinear version of the Euler-Bernoulli beam 

theory is used to model the cantilever oscillations and the gas flow is simulated by 

the DSMC method. The beam displacements and velocities are synchronized in both 

models. The used approach has been presented in [10]. Up to our knowledge, it is a 

first study where a gas flow has been simulated by the molecular approach (Direct 

Simulation Monte Carlo (DSMC) method) interacting with an elastic structure. The 

approach guarantees full coupling of gas-elastic beam interaction for unlimited time 

of simulation 

2. A model of a pressure driven gas flow in a microchannel with an 

obstacle 

Fig. 1 presents schematically the problem considered in this work. Two-dimensional 

pressure driven rarefied gas flow, which interacts with an obstacle is considered. The 

obstacle is an elastic beam fixed to the bottom wall. Pressure driven channel flow is 

well-studied problem. It represents two-dimensional flows of a viscous fluid in a 

space between two infinite parallel plates. The fluid is moving due to pressure 

difference at the channel inlet and outlet. Placing an elastic beam in the channel turns 

this flow into a complex non-linear problem. 

The hybrid method for modelling of interactions of rarefied gas flow and elastic 

obstacle is presented in [10]. This is the first fluid structure interaction method that 

uses molecular approach to model the fluid. However, the methods used to analyse 

the problem are briefly presented below. 
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Fig. 1. A geometrical scheme of the problem 

2.1. The model of the elastic obstacle 

The elastic element inserted in the channel has been modelled as a cantilever beam. 

The geometrically non-linear version of the Euler-Bernoulli beam theory is used to 

describe the beam motion.  

The equations of motion of the beam, which consider large displacements can 

be presented by the following equations [11]: 
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where N and M are the generalized stresses  
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In (1) u is the displacement along x axis (longitudinal displacement), w is  the 

displacement along y axis (transverse beam displacement), ρ is the density of the 

material of the beam, p(y, t) is the transverse loading of the beam, A=bh is the area 

of the beam cross-section, h is the thickness and b is the width of the beam, t is the 

time and by cd the material damping coefficient. The length of the beam is L. 

Considering the geometrical relationship: 
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and the constitutive equation 
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the equations of motion of the beam can be transformed in: 
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In (3) and (4) by E the elastic Young’s modulus is denoted and I is the 

geometrical moment of inertia of the beam cross-section. In the case of rectangular 

cross-section of the beam it is I=bh3/12. 

The boundary conditions for the elastic obstacle are for a cantilever (clamped at 

the one end and free at the tip ) [11]:  
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As far, as the considered case concerns micro objects and the dimensions of the 

channel and the beam are very small, it is necessary to use dimensionless variables 

in the numerical computations. 

The following dimensionless variables are introduced: 

(7) / , / , / , / .y y L w w L t tc L c E      

Then (4) and (5) are transformed in: 

(8) 

4 2
1

v 14 2

213 2 2

1 2 2
0

( , ),

( , ) 1 12
, , .

2

L

L

w w w
c p G y t

ty t

p y t L w w L
p G d

EI y h



 


  
   

 

   
        


 

In the following equations, for convenience, the bars over the dimensionless 

variables will be omitted.  

Equation (8) has to be coupled with the gas flow solution. For this purpose, a 

reduced model of the beam is developed here. 

According to Galerkin procedure, the solution is sought by series 

(9) 
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where wn(y) are space functions representing vibration modes which should satisfy 

geometrical boundary conditions, qn(t) are time functions, and N
f

 is the number of 

modes in the expansion. The natural modes of vibrations wn have the expression 

(10)  ( ) sin sinh (cos cosh )n n n n n n nw y A y y B y y       , 

where the following notations are used: 
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and n are the dimensionless natural frequencies of the linear Euler-Bernoulli beam 

obtained from the frequency equation  

(12) cos cosh 1.     

Substituting (9) into partial differential Equation (4), multiplying it by the modal 

functions, integrating through the beam length, invoking the orthogonality condition 

and assuming the proportional damping the equation is transformed to a set of 

coupled ordinary differential equations of motion: 

(13) 
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In the present work, we have chosen the three modes reduction (Nf=3). The 

preliminary studies of the vibration behaviour of the beam subjected to step loading 

showed that the higher modes do not influence the response. On the other hand, using 

three modes reduction leads to manageable calculations to obtain the system of 

ordinary differential equations, which could be solved quickly and easily by the 

available software. 

Using the three modes reduction the mathematical model of the vibrating beam 

takes the form: 

(15) 
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The nonlinear system of ordinary differential equations (14) was solved by the 

Gear’s method [12]. 

2.2. DSMC 

The Direct Simulation Monte Carlo (DSMC) method was proposed by B i r d  [13] in 

the late 1960s. It is widely used molecular approach to simulate rarefied gas flow in 

upper layers of atmosphere and in different microsystems as Micro-

ElectroMechanical Systems (MEMS), micropumps, flow sensors, etc. 

DSMC uses some simplifications that make possible to reduce computational 

resources of molecular approach and fulfil the gap between molecular dynamics and 

continuum models. Real motion of the particles is split in two parts. The ballistic 

motion of all the particles and the interaction between the molecules without 

changing their positions. The first step is deterministic, while the collisions between 

particles are carried out in a stochastic manner. Other important characteristics of 

DSMC is that one simulator particle, for shortly particle, represents many real 

molecules or atoms. This assumption reduces significantly computational resources. 

DSMC fulfils the gap between molecular dynamics and continuum models where 

molecular dynamics requires impossibly enormous computational resources and 

continuum models are no longer valid. One can see a detailed summary of different 

collision models developed in the framework of the DSMC method [14]. The 

collision procedure used here is advanced Simplified Bernoulli Trial (SBT) scheme, 

[15]. SBT collision scheme obtains correct results for small number of particles per 

cell (see [16, 17]) that makes it straightforwardly applicable to unstructured and 

continuously changing mesh as our case is. 

DSMC uses Cartesian uniform mesh in computational domain and unstructured 

mesh near elastic beam, see Fig. 5, right part. This way we combine fast indexing of 

the particles in uniform mesh and calculation of flow past complex geometries with 

minimal slow down, as indexing of the particles in unstructured mesh requires much 

more computational resources. In cells of a basic mesh the Transient Adaptive Sub-

cells (TAS) technique [18] is used to improve the DSMC spatial accuracy. 2D 

adaptive unstructured mesh near geometry was generated using Delaunay algorithm 

by mesh generator Gmsh [19] with C++ API functions.  

DSMC uses a hard-sphere model of monoatomic gas and the diffuse reflection 

boundary condition on the microchannel and the elastic beam walls. 

3. Validation 

3.1. Verification of the beam model 

The suggested model of the geometrically nonlinear vibration of the beam has been 

checked by comparing the results obtained by the reduced model with theese obtained 

by the commercial program MSC NASTRAN. The loading equivalent to the one 

obtained from the gas pressure cannot be applied to the NASTRAN model and that 

is why a uniformly distributed along the beam length step loading was considered. It 

turned out that MSC Nastran could not calculate problems for structures with very 
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small dimensions, which has been considered in our numerical examples 

(singularities arise). That is why the calculations have been performed for a beam 

with the geometrical dimensions 100 times bigger than the one considered in our 

numerical examples. The dimensions are 𝐿 = 0.248 m, ℎ = 0.0248 m, 𝑏 = 0.0496 m. 

 
Fig. 2. The response of the tip of the beam calculated by the present model (blue colour) and FEM 

program MSC NASTRAN 
 

The material properties were the same as those used in our calculations of the 

coupled problem: 𝐸 = 1.128 MPa and ρ= 8960 kg/m3. The beam has been discretized 

by 40 linear beam elements (41 nodes). The applied load is p=10 kN/m. As can be 

seen in Fig. 2, the results obtained by the both models are very similar and the 

differences in amplitudes are very small. There is a small shift of the periods. This 

could be explained with the small differences in the natural frequencies calculated by 

our model (analytical ones) and the ones obtained by MSC NASTRAN (not shown 

here). 

These results allow us to decide that our model describes with a sufficient 

accuracy the beam motion. 

3.2. DSMC validation of pressure driven flow in a long channel 

It is known that the results obtained by continuum and molecular approaches are still 

close at Kn = 0.05, and therefore the continuum approach can be used to validate the 

results obtained by DSMC. The result of DSMC with SBT collision scheme is 

compared with available analytical solution of viscous, compressible isothermal flow 

in a long microchannel [20], Navier-Stokes equations with velocity slip and 

temperature jump boundary conditions on channel walls, and DSMC with NoTime 

Counter (NTC) collision scheme [13] (see Fig. 3). Navier-Stokes equations are 

calculated by finite-volume method SIMPLE-TS [21]. The considered pressure ratio 

(P=pin/pout) is 3, Knudsen number is 0.05, and the channel aspect ratio (channel length 

to the channel height) is equal to 50. DSMC basic Cartesian uniform mesh is 2000×40 

cells with a total number of 2×106 particles. TAS technique is applied at every basic 

Cartesian cell with average Particles Per Cell (PPC) 2. The result of DSMC with SBT 

shows excellent agreement with DSMC with NTC collision scheme. The comparison 
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of DSMC results with continuum approaches (analytical solution and Navier-Stokes) 

shows excellent agreement. Similar expected differences between molecular and 

continuum models are pointed out in the works of other authors (for example,  

see [18]). 

 
Fig. 3. Horizontal component of velocity along the centerline of the channel y=Hch/2. Horizontal 

velocity profiles, from analytical solution [20], continuum model (Navier-Stokes) calculated by 

SIMPLE-TS method [21], DSMC NoTime Counter (NTC) collision scheme [13], DSMC SBT with 

TAS with PPC 2 

4. Results and discussions 

We consider a non-stationary pressure driven gas flow in a micro-channel with an 

elastic beam fixed to the bottom channel wall (Fig. 1). The initial condition is a gas 

at rest, the pressure of the gas in the channel is equal to the pressure at the outlet pout, 

and the gas temperature is equal to the temperature of the channel walls Twall. At zero 

time t=0 s the inlet is opened suddenly and the gas under pressure pin and temperature 

Tin=Twall enters the channel. We consider the transient and established gas flow. The 

characteristc length used in the calculations of the gas flow is equal to the elastic 

beam length. The length of the beam is 𝐿=2.49×10−6 m, ℎ=0.1L, b=2h, the height of 

the channel is 𝐻ch=2L, and the channel length is 𝐿ch=10L. Knudsen number is equal 

to 0.05. We considered numerical examples with two values of the pressure ratio. 

DSMC basic Cartesian uniform mesh is 400×80 cells and the number of cells 

(elements) of unstructured mesh around the elastic beam varies around 2500. A total 

number of particles for pressure ratio P=1.5 and 3 is 4.8×105 and 8.2×105, 

respectively. 

In Fig. 4 (left part) are shown horizontal velocity, vertical velocity, pressure, 

and temperature fields of a rarefied gas when flow is established. One can see that 

cantilever plays a role of a bend that separates the channel, and turns the pressure 

driven gas flow to be similar to a gas flow through a short nozzle. The gas flow enters 

the channel and the pressure in front of the beam is close to the inlet pressure. After 

the tip of the beam, the velocity accelerates due to significant pressure drops, the gas 

rarefies, and the temperature drops. Fig. 4 (right part) shows used mesh in DSMC 
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rarefied gas modelling. Basic mesh is a Cartesian uniform mesh. The unstructured 

mesh near elastic beam captures irregular form geometry of the beam. In this way we 

have used Cartesian mesh to do fast calculations and a slower unstructured mesh near 

cantilever to model the flow near common geometries. The red line is neutral line of 

the cantilever that is modelled from the Cantilever’s code.  

These results have been obtained for P=3. These for P=1.5 are similar in 

qualitative sense and that is why they are not shown here. More essential influence 

of the pressure difference can be observed on the beam vibration. 

In the numerical calculations, two models of the cantilever have been used – a 

linear model using Small Deflection Beam Theory (SDBT) and nonlinear model 

using Large Deflection Beam Theory (LDBT). 

The loading arising at the tip of the beam in time for P=1.5 is shown in Fig 5. It 

is clearly seen that the loading has a stochastic character. It is natural because the 

molecular approach (DSMC) models the movements of the particles in the rarefied 

gas flow. 

The response of the beam is shown in Fig. 6. The stochastic loading leads to 

non-periodic vibration of the beam. Essential differences can be observed in the 

results obtained by SDBT and LDBT. Generally, it could be concluded that the 

amplitude of vibration obtained by SDBT are a little larger than the obtained by 

LDBT. This is explicable from theoretical point of view because the large deflection 

beam theory considers the axial force, which arises in the beam axis. This increases 

frequencies and decreases amplitudes of vibration. The small figure inserted in the 

large figure presents the behaviour of the tip of the beam at the beginning of the 

process. It can be seen that there is a period when the beam almost does not vibrate 

(vibrations are with very small amplitudes in comparison with these after the initial 

period). The reason is that initially (at transient period) compression wave propagates 

from the channel inlet due to entrance of the gas in a channel with higher pressure 

(pin) than the pressure in channel (pout) at the initial moment. The wave needs time to 

propagate from the channel inlet to the elastic beam. When the wave reaches the 

elastic beam, it reflects partially (lower part) and propagates backword to the channel 

inlet and partially (upper part) continues to the channel outlet. 

This phenomenon is more clearly seen in Fig. 8 where the time history diagram 

of the tip of the beam subjected to a pressure ratio P=3 is shown. The loading on the 

tip of the beam in this case is shown in Fig. 7. It has a stochastic character as in the 

previous case. Here the interaction of compression wave with the elastic beam is more 

clearly seen which arises at the beginning of the process and leads to large values of 

the pressure on the beam for a short period. The considered gas phenomenon 

corresponds to water hammer phenomenon. That is why the displacements of the tip 

of the beam at the transient period are much larger than the vibration after it  

(t > 2.28×10–7 s). The vibration of the beam at the initial period are small, periodic 

and regular. The stochastic character of the response manifests at the later periods. In 

this case also the amplitudes of vibration obtained by SDBT are a little larger than 

the ones obtained by LDBT. 
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Fig. 4. Horizontal velocity, vertical velocity, pressure, and temperature fields, from top to bottom (left 

part) and deflections along the beam length, Cartesian basic mesh, and unstructured mesh near the 

beam (right part) for P=3 and Kn=0.05 

 

 

Fig. 5. The loading at the top of the beam for P=1.5 in time 
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The obtained results demonstrate that the developed computer codes and 

suggested algorithms are capable to study the fully coupled problem of the interaction 

between pressure driven flow of rarefied gas in micro channel and an elastic obstacle. 

Up to our knowledge, the present study is the first attempt in this direction. This 

approach can be used for design and analysis of highly technological devices. 
 

 
Fig. 6. Time-history diagram of the deflection of the top of the beam. Blue colour – small deflection 

beam theory. Red line – large deflection beam theory and P=1.5 
 

 
Fig. 7. The loading at the top of the beam for P=3 in time 
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Fig. 8. Time-history diagram of the deflection of the top of the beam. Blue colour – small deflection 

beam theory. Red line – large deflection beam theory. P=3 
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