
 116

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 20, No 6

Special Issue on New Developments in Scalable Computing

Sofia 2020 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2020-0066

On Dynamic Parallelization of Multilevel Monte Carlo Algorithm

Nikolay Shegunov1,2, Oleg Iliev1,3
1Fraunhofer ITWM, Fraunhoferplatz 1, 67661 Kaiserslautern, Germany
2Sofia University, FMI, 1164 Sofia, 5 James Bourchier Blvd., Sofia, Bulgaria
3Institute of Mathematics, BAS, Acad. G. Bonchev St., 8, 1113 Sofia, Bulgaria

E-mails: shegunov@itwm.fraunhofer.de oleg.iliev@itwm.fraunhofer.de

Abstract: MultiLevel Monte Carlo (MLMC) attracts great interest for numerical

simulations of Stochastic Partial Differential Equations (SPDEs), due to its

superiority over the standard Monte Carlo (MC) approach. MLMC combines in a

proper manner many cheap fast simulations with few slow and expensive ones, the

variance is reduced, and a significant speed up is achieved. Simulations with

MC/MLMC consist of three main components: generating random fields, solving

deterministic problem and reduction of the variance. Each part is subject to a

different degree of parallelism. Compared to the classical MC, MLMC introduces

“levels” on which the sampling is done. These levels have different computational

cost, thus, efficiently utilizing the parallel resources becomes a non-trivial problem.

The main focus of this paper is the parallelization of the MLMC Algorithm.

Keywords: SPDE, MLMC, UQ, Parallelization, Flow in random porous media.

1. Introduction

Monte Carlo, MC, methods are well known class of computational methods for

Uncertainty Quantification (UQ). They rely on repeated random sampling to obtain

numerical results. A major drawback of this approach is its slow convergence rate,

which is proportional to the variance and inverse proportional to the square root of

the number of samples. MultiLevel Monte Carlo (MLMC) methods are variance

reduction methods combining many cheap samples with few expensive samples. For

an overview on MLMC we refer to G i l e s [1], G r a h a m et al. [2] and references

therein. MLMC is particularly useful for applications related to flow in random

porous media, in particular, for solving elliptic SPDE. This is the problem considered

here. Despite its severe superiority to MC (see, e.g., C l i f e et al. [3], B l a h e t a,

B é r e š and D o m e s o v á [4], M o h r i n g et al. [5]), MLMC is still

computationally very expensive, and efficient parallelization is needed. The

parallelization can be done at three levels: (i) parallelizing the solution for each

sample (deterministic PDE), (ii) parallelizing the solution of all samples at one

MLMC level, (iii) parallelizing at all or several MLMC levels simultaneously. See

mailto:shegunov@itwm.fraunhofer.de

 117

also D r z i s g a et al. [6] for state-of-the-art parallelization for (i) and (ii), and for

general discussion. Most of the papers in the literature discuss (i) and (ii). An optimal

full parallelization requires solution of a NP optimization problem, and different

heuristic approaches are used in different papers to approximate its solution.

In this paper we restrict ourselves to moderate number of processors and present

a dynamic approach to the load distribution in the MLMC algorithm, simultaneously

over several levels. The goal is to compute the mean flux through saturated porous

media with prescribed pressure drop, and known distribution of the random

coefficients. Earlier, in M o h r i n g et al. [5], I l i e v, M o h r i n g and S h e g u n o v

[7] we have discussed approaches for defining coarse levels in MLMC, and in

Z a k h a r o v et al. [8], we have studied a static parallelization done at each level

separately.

The simulations, that useMLMC for SPDEs can be broken into three main parts:

(a) generation of correlated random field that represents the uncertainty in the SPDEs;

(b) solving deterministic PDE, for each realization of the random coefficients;

(c) quantifying the uncertainty, using Multilevel Monte Carlo.

The rest of the paper is organized as follows. In the next section a Laplace

equation with random coefficients is considered as a model problem. Next, the

generation of the stochastic coefficients is considered, together with a short

discussion on the used discretization, and a text recalling the mathematical

formulation of the MLMC. The proposed parallelization strategy and the results from

the computational experiments are presented in the third section.

2. Mathematical model and MLMC Algorithm

Formulation of the BVP for the SPDE. Consider an elliptic SPDE in unit cube in

the domain 𝐷 = (0, 1)𝑑 , 𝑑 = 2, 3, steady state single phase flow in random porous

media,

(1) −𝛻 ⋅ [𝑘(𝑥, 𝜔)𝛻𝑝(𝑥, 𝜔)] = 0 for 𝑥 ∈ 𝐷 = (0, 1)𝑑 , 𝜔 ∈ 𝛺.
Proper boundary conditions are prescribed, see, e.g., I l i e v, M o h r i n g and

S h e g u n o v [7]. Both the coefficient 𝑘(𝑥, 𝜔)and the solution 𝑝(𝑥, 𝜔) are subject to

uncertainty, characterized by the random vector 𝜔 in a properly defined random

space 𝛺. Quantity of interest here is the mean total flux at the outflow boundary:

𝐸[𝑄(𝑥, 𝜔)], where 𝑄(𝑥, 𝜔): = ∫ 𝑘(𝑥, 𝜔)𝜕𝑛𝑝(𝑥, 𝜔)
{𝑥=0}∩𝜕𝐷

𝑑𝑥.

Although relatively simple, this problem illustrates well the challenges in the

MLMC simulation. Solving Equation (1) is extremely challenging due to the huge

dimensionality of the stochastic space. A common way to overcome this is to assume

certain distribution for 𝑘(𝑥, 𝜔), and to consider finite set of samples from it. One

model that has been studied extensively is a log-normal distribution for 𝑘(𝑥, 𝜔). The

used covariance function is written as follows:

𝐶(𝑥, 𝑦) = 𝜎2exp(−∣∣ 𝑥 − 𝑦 ∣∣2/𝜆),
and satisfies

𝐸[𝐾(𝑥, .)] = 0, 𝐸[𝐾(𝑥, .), 𝐾(𝑦, .)] = 𝑐(𝑥 − 𝑦) = 𝑐(𝑦 − 𝑥),
for 𝑥, 𝑦 ∈ 𝐷 and 𝐾(𝑥, 𝜔) = log(𝑘(𝑥, 𝜔)).

 118

Here 𝜎 is the variance of the distribution and 𝜆 is the correlation length and

the function 𝑐: 𝐷 → 𝑅 is one parameter stationary covariance function. To solve

Equation (1) numerically, Monte Carlo type methods are often used. Thus, first

permeability field has to be sampled (generated). Then the BVP for this realization

of the permeability has to be solved. Finally, the uncertainty has to be quantified by

calculating the empirical mean.

Random field generation. Generating permeability fields is an essential

problem in solving SPDEs. The two most common approaches of generating random

fields are Karhunen-Loeve expansion and Circulant embedding. Here a Circulant

embedding algorithm is employed. For detailed description of our implementation

we refer to M o h r i n g et al. [5].

Deterministic BVP problem. For a fixed random filed, aka permeability field, a

standard numerical scheme can be used for solving the deterministic BVP. A standard

cell centered finite volume is employed as spatial discretization since it has local

conservation properties. The permeability can vary orders of magnitude over one

realization; thus, the governing matrix has a large condition number. We use the

Conjugate Gradient method preconditioned with Algebraic Multi Grid (AMG), as a

liner solver provided by Dune library, outlined in B a s t i a n et al. [9], since it

performs well for problems with large condition number.

UQ using MLMC. We shortly rewind the idea of MLMC. For more details we

refer to C l i f f e et al. [3]. Let 𝜔: 𝛺 ↦ 𝑅𝑀×𝑀 be a random vector over some

probability space (in the 2D case), where M denotes the number of grid cells along

one direction. Consider quantity of interest 𝑄𝑀(𝜔), defined by some functional,

depending on 𝜔.

Assume that 𝐸[𝑄𝑀] can be made arbitrary close to 𝐸[𝑄] by choosing M

sufficiently large (in our case, consider fine grid). Our goal is to approximate 𝐸[𝑄] by

𝐸[𝑄𝑀]. This can be achieved by computing an estimator �̂�𝑀, and quantifying its

accuracy using the root mean square error 𝑒(�̂�𝑀) = (𝐸[(�̂�𝑀 − 𝐸[𝑄])2])1 2⁄ . The

standard MC estimator for 𝐸[𝑄𝑀] is defined as

�̂�𝑀,𝑁
𝑀𝐶 =

1

𝑁
∑ 𝑄𝑀

𝑖

𝑁

𝑖

,

where 𝑄𝑀
𝑖 = 𝑄𝑀(𝜔_𝑖), 𝑖 = 1, … , 𝑁, are computed with independent samples of

permeability k. Assume the cost to compute one 𝐶(𝑄𝑀
𝑖) = O(𝑀𝛾) sample, where 𝛾

is positive. The mean square error can be expressed as

𝑒(�̂�𝑀,𝑁
𝑀𝐶)2 = 𝑉[�̂�𝑀,𝑁

𝑀𝐶] + (𝐸[�̂�𝑀,𝑁
𝑀𝐶] − 𝐸[𝑄])2.

Since it can be assumed that 𝐸[�̂�𝑀,𝑁
𝑀𝐶] = 𝐸[𝑄𝑀], when N is large enough and

𝑉[�̂�𝑀,𝑁
𝑀𝐶] = 𝑁−1𝑉[𝑄𝑀], the mean square error becomes:

(2) 𝑒(�̂�𝑀,𝑁
𝑀𝐶)2 = 𝑁−1𝑉[𝑄𝑀] + (𝐸[𝑄𝑀] − 𝐸[𝑄])2.

The second term in Equation (2) comes from the discretization of the problem.

Under the assumption that 𝑀 is sufficiently large, it can be considered that
(𝐸[𝑄𝑀] − 𝐸[𝑄])2 ≤ ɛ2/2 holds. Then choosing 𝑁−1𝑉[𝑄𝑀] ≤ ɛ2/2, gives error

estimation 𝑒(�̂�𝑀,𝑁
𝑀𝐶) ≤ ɛ. Neglecting the second term in (2), it is clear that, the error

of MC Algorithm is inverse proportional to the square root of the number of samples

 119

N, and proportional to the variance. A broad class of methods aim at reducing the

variance in order to obtain better accuracy with the same efforts. Multilevel Monte

Carlo method, MLMC belong to this class of methods. Its main idea is to properly

combine many cheap computations on a “coarse” level with few expensive

corrections simulations on “finer” levels. The efficiency of the particular MLMC

method depends on how well the original variance is reproduced on the “coarse”

level. More specifically the method is described as follows.

Let {𝑀𝑙: 𝑙 = 0 … 𝐿} ∈ 𝑁 be increasing sequence of numbers called levels, with

corresponding quantities {𝑄𝑀𝑙
}𝑙=0

𝐿 , and let 𝑠 ≥ 2 be coarsening factor, such that we

have 𝑀𝑙 = 𝑠𝑀𝑙−1, for 𝑙 = 0 … 𝐿. Defining 𝑌𝑙 = 𝑄𝑀𝑙
− 𝑄𝑀𝑙−1

and setting 𝑌0 = 𝑄𝑀0
,

we can write the following telescopic expansion for 𝐸:

(3) 𝐸[𝑄𝑀] = 𝐸[𝑄𝑀0
] + ∑ 𝐸[𝑄𝑀𝑙

− 𝑄𝑀𝑙−1
]

𝐿

𝑙=1
= ∑ 𝐸[𝑌𝑙]𝐿

𝑙=0 .

The expectation on the finest level is equal to the expectation on the coarsest

level plus sum of corrections of the expectation on consecutive levels. Each term in

Equation (3) is approximated using standard MC independent estimators, with

𝑁𝑙 samples,

𝑌�̂� = 𝑁𝑙
−1 ∑ (𝑄𝑀𝑙

(𝑖)
− 𝑄𝑀𝑙−1

(𝑖)
) .

𝑁𝑙

𝑖

To obtain a stopping criteria and express the error in terms of samples, we use

Lagrangian multipliers such that:

𝑒(�̂�𝑀,𝑁
ML)2 = ∑ 𝑁𝑙

−1𝑉[𝑌𝑙] + (𝐸[𝑄𝑀] − 𝐸[𝑄])2

𝐿

𝑙=0

≤ 2ɛ2.

Let 𝑣𝑙 = 𝑉[𝑌𝑙], 𝑡𝑙the mean time computing difference 𝑌𝑙 once, and
𝑇 = ∑ 𝑛𝑙𝑡𝑙 𝐿

𝑙=0 be the total time for the computation. Minimizing 𝑇 under the above

constraint and turning it to integer value gives us

(4) 𝑛𝑙 = ⌈𝛼√(
𝑣𝑙

𝑡𝑙
)⌉ with Lagrangian multiplier 𝛼 =

1

𝜀2 ∑ √(𝑣𝑙/𝑡𝑙)
𝐿

𝑙=0
.

To quantify the uncertainty in Equation (3), the levels are defined as a resolution

of the spatial discretization, such that the number of square cells in 𝐷 = (0, 1)2 and

cubic cells in 𝐷 = (0, 1)3 are exact power of 2. This means, that on the finer level

we have 4 times more cells than coarser level for 𝐷 = (0, 1)2 and 8 for 𝐷 = (0, 1)3.

Permeability approximation on coarser levels. To represent the random field

(permeability) on the coarser levels (grids), we consider two recursive constructions.

Simple averaging. Consider Fig. (1). One simple idea is to set the value in a

cell on the coarser level (grid) by just taking the arithmetic average of four cells in

two dimensional case, and eight cells in three dimensional case (see Fig. 1).

Renormalization. Here we calculate the permeability on the coarser levels

(grids) in MLMC by renormalization. This technique has been widely used in the past

(and is still intensively used by many groups) for upscaling hydraulic conductivity in

heterogeneous media. For details we refer to W e n and G o m e z-H e r n á n d e z [10]

and the references therein. Note that the effective hydraulic conductivity obtained as

a result of the renormalization can be used to calculate an effective flux. In a nutshell,

 120

the renormalization procedure used here is based on a recursive combination of

harmonic, arithmetic and geometric averaging. For each coarse cell compounded by

2×2 finer cells, the permeability coefficient on a twice-coarser grid is calculated as

𝐾1234 = √𝐾1234
𝑎×ℎ 𝐾1234

ℎ×𝑎 , More details can be found in I l i e v, M o h r i n g and

S h e g u n o v [7]. The procedure is repeated recursively for each coarser level.

Fig. 1. Sketch on defining permeability on coarser levels

3. Computational experiments

This section is split into three parts. The first part provides new results confirming

that the usage of permeability renormalization in building the coarse levels in MLMC

performs better compared to the usage of just arithmetic averaging. In the second

part, which is the main part of this paper, strategies for dynamic parallelization of the

MLMC Algorithms are discussed. Finally, in the third part first results illustrating the

performance of the parallelization algorithm are presented.

Permeability renormalization vs arithmetic averaging. Recall that ideally the

coarsest level in MLMC should have a variance which is almost equal to the variance

at the finest level, and the variance of the correction between finest and next coarse

level should be as small as possible. In this case many (cheap) simulations will be

performed on the coarsest level, and few (expensive) simulations will be performed

at the finest level.

Table 1 summarizes simulation results for four-level MLMC for the case when

𝜎 = 2.75, 𝜆 = 0.25, and the prescribed tolerance is 𝜀 = 1𝑒−3. The mean flux

computed with the plain MC is used as a reference. The numbers in the last four

columns in the Table 1 are the numbers of samples required per level. It is directly

observable that permeability renormalization transfers better the variance to the

coarsest level and leads to a small variance at the finest level. Indeed, it requires only

144 samples at the finest level, contrary to 2211 samples required at the finest level

in the case of arithmetic averaging for the permeability.

Table 1. Four-level MLMC, 960 processor cores, 𝜎 = 2.75, 𝜆 = 0.25, ε= 1×10–3

Method E[Q]
∣ 𝑬[𝑸] − 𝑬𝐌𝐂[𝑸] ∣

𝑬𝐌𝐂[𝑸]
 Time, s 𝒀𝟎 𝒀𝟏 𝒀𝟐 𝒀𝟑

AVG 1.3411 5.9×10–4 3696 1.5×106 9035 3760 2211

RENORM 1.3412 5.9×10–4 3262 1.4×106 2674 1025 144

 121

Results from simulations for a slightly harder problem, 𝜎 = 2.75, 𝜆 = 0.3, can

be found in Table 2. Five-level Multilevel Monte Carlo algorithm and 3480

processors are used here. Similar results can be observed ‒ permeability

renormalization outperforms the arithmetic averaging.

Table 2. Five-level MLMC, 3840 processors cores, 𝜎 = 2.75, 𝜆 = 0.3, and ε= 1×10‒3

Method E[Q]
∣ 𝑬[𝑸] − 𝑬𝐌𝐂[𝑸] ∣

𝑬𝐌𝐂[𝑸]
 Time, s 𝒀𝟎 𝒀𝟏 𝒀𝟐 𝒀𝟑 𝑌4

AVG 1.4317 5.5×10‒4 2273 2.4×106 11043 10646 4700 2273

RENORM 1.4316 5.5×10‒4 1156 2.3×106 9473 3608 1420 252

Parallel MLMC. Solving SPDE for Laplace equation, Equation (1), for

specified stochastic parameters 𝜆, 𝜎, fixed fine grid resolution, and prescribed number

of levels and MLMC tolerance, is based on the following algorithmic procedure:

(i) based on former experience or on intuition, prescribe the initial number of samples

for each of the levels; (ii) perform simulations with these predefined numbers of

samples and compute an approximation to the variance at each level; (iii) use these

approximate variances and Equation (4) to estimate the total number of samples

needed per level; (iv) for each 𝑌�̂�, generate the required additional number of random

vectors, and for each of them solve the respective deterministic problem; (v) check

for convergence with Equation (4), and compute final statistical moments if

converged, or go to (iii) in the opposite case. Note that due to inaccuracy in evaluation

of the variances at different levels after the initial stage, the total number of the

needed samples per level, may be underestimated or overestimated. To minimize this

risk, it is recommended to perform several estimation steps. Equation (4) implies that

at each estimation step information from all levels has to be collected, that is, each

estimate is a synchronization point of the parallel algorithm. After each “solve stage”,

a new estimated numbers of samples per level may be computed, and rebalancing of

the available processors may be required. In such a dynamic rebalancing the number

of processors assigned to the different levels may change, aiming to obtain better

balancing for the newly estimated number of samples per level. The problem

becomes even more involving, when the deterministic problems are large, and several

processors has to be assigned for solving one deterministic problem.

Additionally, a problem can arise when the algorithm is close to converging. In

this case, Equation (4) can give an estimate that just few samples need to be solved

per a certain level, and this imposes challenges to balancing the work of the

processors. To improve upon that problem, we introduce a measure for convergence

“rate” between two “estimate” cycles, namely, 𝛿 = 𝑐 − 𝑝. Here 𝑐 denotes the RMSE

for the current cycle, and 𝑝 denotes the RMSE for the previous one. It is clear that

when we are very close to the desired tolerance, the difference 𝛿 will be very small.

If a prescribed threshold for 𝛿 is reached, one can either terminate the algorithm, or

can artificiality increase the estimated number of samples for certain levels.

 122

Fig. 2. Typical convergence of MLMC

Let us focus on one Estimate-Solve cycle of the algorithm, and without loss of

generality assume that we have three-level MLMC Algorithm. Furthermore, suppose

that we have already obtained statistical information from a previous cycle and have

computed an estimate for the required number of samples per level using

Equation (4).

Let us denote by 𝑁𝑖 , 𝑖 = 0, 1, 2, the number of required realizations (samples)

per Monte Carlo estimator 𝑌�̂�, where 𝑁0 is the estimated number of samples for the

estimator 𝑌0̂, corresponding to the coarsest level. Denote by 𝑝𝑖 the number of

processors allocated to 𝑌�̂�, and by 𝑝𝑙𝑖

𝑔
the respective group size of processors working

on a single realization at this level. Finally, denote by 𝑡𝑖 the respective time constants

for solving a single problem once on a single processor on the respective level, and

by 𝑝total the total number of available processors. Then we can compute the total

CPU time for the current “estimate-solve” cycle as

𝑇CPU
total = 𝑁0𝑡0 + 𝑁1𝑡1 + 𝑁2𝑡2.

Ideally the time which each processor should work is calculated as 𝑇CPU
𝑝

=
𝑇CPU

total

𝑝total.

Then dividing the CPU time needed for a 𝑌�̂� by 𝑇CPU
𝑝

, we get a continuous

value for the number of processors for each of the level estimators,

𝑝𝑖
ideal =

𝑁𝑖𝑡𝑖

𝑇CPU
𝑝 for 𝑖 = 0, 1, 2.

Fig. 3. Scheduling procedure for the parallel MLMC Algorithm

1×10‒1

1×10‒2

1×10‒3

1×10‒4

1×10‒5

1×10‒6

1×10‒7

 123

Let’s further assume that we want to distribute all of the available processors to

work simultaneously on all of the estimators 𝑌𝑖. Unlike most of the papers, we do not

parallelize level by level, we use the fact that MLMC provides top level coarse

graining, and parallelization is done on all MLMC levels simultaneously.

Then we can take

𝑝𝑖 = ⌊𝑝𝑖
ideal⌋, for 𝑖 = 0, 1, 2,

such that each 𝑝𝑖 ≡ 0(mod 𝑝𝑙𝑖

𝑔
). This gives an integer number for the processors

allocation per level. The unallocated processors can be left unused for this cycle,

especially if this is a small number. Alternatively, one can try to further search for an

optimal scheduling by constructing possible set of all upper and lower bounds by

allocating the leftover processors to different estimators. In other words, we try to

find an optimal integer processor distribution for the estimators between ∑ 𝑝𝑖 2
𝑖=0 and

𝑝total. Till now we have only looked at the case where we distributed all of the

available processors to work simultaneously on all of the level estimators. It might

be difficult to find optimal strategy in this case because of strong imbalance of work

between the estimators for the different levels. To find a reasonable strategy, we can

consider all possible combinations of estimator groups. For example, it is possible to

first schedule parallel computations for the estimator {𝑌0}, and after that to schedule

parallel computations simultaneously for {𝑌1, 𝑌2}, and for the leftover from the

coarsest level, if any. Note that this general approach includes the case of computing

MLMC level by level. There are a few options to tackle the parallelism for each single

estimator. A trivial way to distribute the samples to the available processors is to

divide the work equally among them. This approach works well for many small

samples with small computational time per sample. Another approach to distribute

the work is by job dispatching using master-slave paradigm, similar to the job queue

in Multi-Threading approach. In this way the problem with varying computational

costs per sample is solved, however this will introduce huge number of small

messages during computation. A third possibility of job distribution is a hybrid

between the two. To improve the overhead due to integer rounding and varying

computational time per sample in the following approach. Instead of waiting all the

groups to finish the computations, the group that has finished its task first, can inform

the other groups to stop computations, so that a rescheduling of the remaining work

can be done. Thus, we have message exchange only if one group has finished its jobs.

This is somewhat analogous to job-stealing in Multi-Threading. Further on, there are

two possibilities for rescheduling: locally on a given estimator (level), or globally,

across estimators for all levels, using Equation (4). Which one is more efficient,

depends, on number of groups we have, how many processors etc. The results

presented below are obtained using the global redistribution technique. The other

approaches, as well as comparison with the scheduling strategy from D r z i s g a et

al. [6], where level by level parallelization is done, is ongoing work and will be

reported elsewhere.

Parallel MLMC Simulations. The computational times for 𝜎 = 2.75, 𝜆 = 0.3

with the two considered coarsening for the permeability are shown on Fig. 4a (left).

In the simulations we use different size of the groups (number of processors allocated

 124

per single deterministic problem) at different levels, namely 𝑃𝑙0

𝑔
= 1, 𝑃𝑙0

𝑔
= 2,

𝑃𝑙0

𝑔
= 3, 𝑃𝑙0

𝑔
= 4, 𝑃𝑙0

𝑔
= 5. The different times and processor distribution per sample

do not affect significantly the efficiency of the algorithm for the two considered

coarsening.

(a) (b)

Fig. 4. Computational performance of permeability renormalization vs averaging (a); and scaling for

large number of processor cores in the case of one scheduling per “solve-estimate” cycle and in the

case of one or more enforced re-scheduling (b).

The performance of the parallel algorithm for large number of processor cores

is shown on Fig. 4b (right). Renormalization is used in the coarsening. The

computational times in the case when we may have several enforced estimates and

rescheduling cycles (denoted as Yes, interrupted), and in the case when we wait for

all the work scheduled for the current cycle to be completed before having a new

estimate and scheduling (denoted as No, cycles not interrupted) are summarized in

Table 3. In the case of interruption of a cycle (due to appearance of idle processors),

updated estimates for the numbers of the needed samples per level are calculated

using Equation (4) and the discussed optimization approach, and rescheduling of the

available resources over all levels is carried out. This is a more efficient

parallelization approach, as it is confirmed also by the numbers in Table 3.

Table 3. Five-Level MLMC Simulation on 7200 processor cores

Interrupted E[Q] Time, s Median Q4

NO 1.7656 1251 1220 1416

YES 1.7655 955 947 1031

 125

4. Summary

An approach for dynamic parallelization simultaneously for all or several levels of

Multilevel Monte Carlo algorithm is presented aiming at obtaining better load

distribution among the processor cores. In this way MLMC is used not only as a

variance reduction method, but also is used to provide coarse grain parallelization.

The presented simulation results demonstrate the efficiency of the parallelization

approach.

Acknowledgments: The authors gratefully acknowledge the provided computing time on SuperMUC at

Leibniz Supercomputing Centre (www.lrz.de).

R e f e r e n c e s

1. G i l e s, M. B. Multilevel Monte Carlo Methods. – Acta Numerica, Vol. 24, 2015, pp. 259-328.

DOI: 10.1017/S096249291500001X.

2. G r a h a m, G., F. Y. K u o, D. N u y e n s, R. S c h e i c h l, I. H. S l o a n. Quasi-Monte Carlo

Methods for Elliptic PDEs with Random Coefficients and Applications. – Journal of

Computational Physics, Vol. 230, 2011, No 10, pp. 3668-3694.

3. C l i f f e, K. A., M. B. G i l e s, R. S c h e i c h l, A. L. T e c k e n t r u p. Multilevel Monte Carlo

Methods and Applications to Elliptic PDEs with Random Coefficients. – Computing and

Visualization in Science, Vol. 14, 2011, No 1. DOI: 10.1007/S00791-011-0160-X.

4. B l a h e t a, R., M. B é r e š, S. D o m e s o v á. A Study of Stochastic FEM Method for Porous Media

Flow Problem. – In: R. Bris, P. Dao, Eds. Proc. of International Conference Applied

Mathematics in Engineering and Reliability. CRC Press, 2016, pp. 281-289.

5. M o h r i n g, J., R. M i l k, A. N g o, O. K l e i n, O. I l i e v, M. O h l b e r g e r, P. B a s t i a n.
Uncertainty Quantification for Porous Media Flow Using Multilevel Monte Carlo. – In: Proc.

of Int. Conf. Large-Scale Scientific Computing, Springer International Publishing, 2015,

pp. 145-152.

6. D r z i s g a, D., B. G m e i n e r, U. R u d e, R. S c h e i c h l. Scheduling Massively Parallel Multigrid

for Multilevel Monte Carlo Methods. – SISC, Vol. 39, 2017, No 5, S873-97.

7. I l i e v, O., J. M o h r i n g, N. S h e g u n o v. Renormalization Based MLMC Method for Scalar

Elliptic SPDE. – In: Proc. of International Conference on Large-Scale Scientific Computing,

Springer, 2017, pp. 145-152.

8. Z a k h a r o v, P., O. I l i e v, J. M o h r i n g, N. S h e g u n o v. Parallel Multilevel Monte Carlo

Algorithms for Elliptic PDEs with Random Coefficients. – In: Lecture Notes in Computer

Science. Vol. 11958. 2020, p. 463.

9. B a s t i a n, P., M. B l a t t, A. D e d n e r, C. E n g w e r, R. K l o f k o r n, M. O h l b e r g e r,

O. S a n d e r. A Generic Grid Interface for Parallel and Adaptive Scientific Computing.

Part I: Abstract Framework. – Computing, Vol. 82, 2008, No 2-3, pp. 103-119.

10. W e n, X. H., J. J. G o m e z-H e r n á n d e z. Upscaling Hydraulic Conductivities in Heterogeneous

Media: An Overview. – J. Hydrol., Vol. 183, 1996, No 1-2, pp. ix-xxxii.

Received: 25.09.2020; Second Version: 30.10.2020; Accepted: 4.11.2020

http://www.lrz.de/

