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Abstract: The scattering of time-harmonic waves by a finite, blunt nano-crack in a 

graded, viscoelastic bulk material with a free surface is considered in this work. Non-

classical boundary conditions and a localized constitutive equation at the interface 

between crack and matrix, following the Gurtin-Murdoch surface elasticity theory 

are introduced. An efficient numerical technique is developed using integro-

differential equations along the nano-crack line that is based on an analytically 

derived Green‘s function for the quadratically inhomogeneous half-plane. The 

dependence of the diffracted and scattered waves and of the local stress 

concentration fields on key problem parameters such as viscosity, inhomogeneity, 

surface elasticity, and interaction between the nano-crack and the free surface are 

all examined through an extensive parametric study. 

Keywords: Viscoelasticity, graded half-plane, nano-crack, integro-differential 

equations, stress concentration, wave scattering, wave diffraction.  

1. Introduction 

The aim of the study is to solve the problem of dynamic fracture for a nano-cracked, 

viscoelastic and inhomogeneous half-plane subjected to time-harmonic waves by the 

Boundary Integral Equation Method (BIEM). This numerical method is based on 

solution of an integro-differential equation along the nano-crack interface, with 

kernel functions which are derived analytically in the form of a Green’s function and 

its derivatives for the inhomogeneous half-plane, see R a n g e l o v  and M a n o l i s  

[13]. The study is a continuation of the authors’ previous results, see R a n g e l o v, 

D i n e v a  and M a n o l i s  [12], where the dynamic nano-crack problem is solved in 

a viscoelastic anisotropic plane, and in R a n g e l o v, D i n e v a  and M a n o l i s  [11], 

where the dynamic nano-crack problem is solved in an elastic isotropic graded half-

plane.  
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The novelty of the current work lies in:  

(a) The use of conventional mechanical models with the appropriate 

modifications to account for surface effects produces software that is efficient, both 

in terms of time plus memory requirements. This is in contrast to more advanced 

continuum mechanics models [1] that consider the atomic level, which in turn yields 

software with very high computational requirements. 

(b) The solution of integro-differential equations for a more sophisticated 

scalable and accurate mechanical model that takes into account material viscosity 

using the Zener model, plus the quadratic variation of the material parameters with 

depth.  

We introduce the use of a dynamic Green‘s function for the graded half-plane, 

as well as the free-field wave solution in an inhomogeneous half-plane. Finally, 

numerical examples are presented for the Stress Concentration Field (SCF) near the 

nano-crack tip and the scattered wave field along the free-surface of the graded half-

plane, so as to demonstrate the influence of all these mechanical model parameters 

on the problem at hand. 

2.  Statement of the problem 

Consider an isotropic, viscoelastic, quadratically inhomogeneous in depth half-plane 

defined in the Cartesian coordinate system 1 2Ox x  as the domain  2 0x    

/ 2 1.5d a  , with free-surface boundary  ff 2 0x   . The domain   contains an 

embedded nano-crack at fixed depth d  under normally incident, free field time-

harmonic  

P-waves with frequency   propagating in the half-plane 2 0x  . In-plane wave 

motion with respect to the plane 3 0x   is assumed, see Fig. 1. The model for the 

nano-crack S is a blunt crack with a crack root in the shape of a semi-ellipse with 

semi-major axis c0 and semi-minor axis 0,c c c  (Fig.1). The perimeter of the crack 

is 0 02(2 2 ) 4 ( )S a c c E g   , 0 0.0375c a , with size parameter a  falling in the 

interval 10–7 -10–10  m, where 
2

01 ( / )g c c   and 

/2

2 2

0

( ) 1 sinE g g d



    is the 

complete elliptic integral of second kind, see [4]. If 
0c c , then the blunt nano-crack 

has a crack root of semi-circular shape with radius c0, while if c = 0, the blunt nano-

crack degenerates to a line crack with a length 2a. The blunt nano-crack‘s line S can 

be expressed in the following way, see [11]: l rS S S S S     , where the flat 

part of S is S S  , and the left and right crack roots are represented by semi-

elliptical shapes l rS S . 
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Fig. 1. Graded half-plane with a blunt nano-crack S under a normally incident time-harmonic P-wave 

 

The bulk material properties are assumed to be functions of one coordinate (say 

depth for convenience), i.e., 0( ) ( ) ( )x x h x    , and 0( ) ( )x h x  , where 

function  
2

2 2( ) 1h x a x  , 2 0a  , is a quadratic function. This material profile 

indicates a quadratic-type variation with respect to the depth coordinate 2 0x  . 

Furthermore, Poisson‘s ratio is fixed at 0.25   and 0 0  , 0 0   are  reference 

values for the shear modulus and the mass density, respectively, which define the 

corresponding homogeneous  half-plane  when  2 0a  . Under plane-strain 

conditions, the only non-zero field quantities are the displacement components 

( , ), 1, 2iu x i  , the stress components ( , )ij x  , the strain components ( , )ij x   

and the tractions ( , ) ( , )i ij jt x x n   . Here, ,jn  j = 1, 2, are  the components of the 

outward pointing, unit normal vector to either the nano-crack boundary S or to the 

free surface ff , and all quantities defined depend on coordinates 1 2( , )x x x  and on 

the frequency   of the incident wave. The Boundary-Value Problem (BVP) under 

consideration represents elastic wave scattering and diffraction by a sub-surface finite 

crack located at depth d beneath the free surface ff  of the graded half-plane. In what 

follows, we define the BVP in the frequency domain in terms of the governing 

equations of motion and the boundary conditions. 

2.1. Constitutive equations 

The constitutive law used here follows the Zener viscoelastic model with fractional 

time derivatives of order α in the frequency domain (see S c h a n z  [14], M a i n a r d i  

[7]): 

(1)    1 ( ) ( , ) 1 ( ) ( , )ij ijkl klp i x C q i x         , 

where: 0, 0p q  , [0,1]  are the model coefficients, and for an isotropic 

material,  ( ) ( )ijkl ij kl ik jl il jkC x x           are the stiffness coefficients and ij  

is the Kroneker symbol. If 0   or if p q , then the Zener model (1) degenerates 

to Hooke’s law for anisotropic materials. In this case 1  , p q , we have the 

classical Zener model presenting the rheological model for the standard linear solid. 
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The derivative order denoted by  has no physical meaning, e.g., it simply acts as an 

interpolant between two ascending order integer derivatives. For instance, parameter 

  in a single degree-of freedom representation of a nonlinear base isolation system 

interpolates between the zero and the first order time derivatives that appear in the 

equation of motion, see M a k r o u  and M a n o l i s  [8]. A best-fit (or optimal) value 

for   can only be estimated by recourse to experimentally obtained data. 

Next, under the assumption of small deformations, the strain-displacement 

relation for in-plane wave motion is  

(2)  , ,( , ) 0.5 ( , ) ( , )kl k l l kx u x u x     , 

where the comma subscripts denote partial differentiation with respect to the spatial 

coordinates and the summation convention is implied over repeated indices.  

2.2. Equation of motion and incident wave field 

The equations of motion for time-harmonic waves in the absence of body forces are 

(3) 2

, ( , ) ( ) ( , ) 0ij j ix x u x      , 

In the above, 2 21 ( )

1 ( )

p i

q i






 







 is the square of the damped frequency, see 

D i n e v a  and R a n g e l o v  [2]. The total displacement ( , )iu x   and stress ( , )ij x    

wave fields that develop in a graded half-plane containing an embedded nano-crack 

are as follows: 

(4) ff sc ff sc( , ) ( , ) ( , ), ( , ) ( , ) ( , )i i i ij ij iju x u x u x x x x            , 

where ff ( , )iu x   and ff ( , )ij x  , respectively, are the free-field displacements and 

stresses satisfying the governing Equation (3), the Sommerfeld radiation condition at 

infinity and the zero traction conditions along the free-surface ff  of the graded half-

plane in the absence of a crack (M a n o l i s  et al. [9]), i.e., 

(5) 
ff ff

ff ff

2 0i it 
 
  . 

Finally, the displacements and stress fields that are scattered by the free-surface 

boundary and by the crack’s line S are denoted as sc ( , )iu x   and sc ( , )ij x  , 

respectively.  

2.3. Boundary conditions 

The mechanical model of G u r t i n  [5], assumes that the interface layer S between 

the crack and surrounded matrix has zero thickness and its own elastic properties. In 

addition, the surface stress along this interface layer is given by  

(6) 0 /S S

ij ij iiE       . 

In the above, E is the deformation-dependent surface energy density, 
S

ii  is the 

strain tensor along surface S and 0 is the residual surface tension under unstrained 

conditions along S, which induces an additional static deformation. This tension is 
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usually ignored in dynamic analysis, because its static nature does not influence the 

response of the solid under transient loads. It is assumed that the surface layer S has 

zero thickness, but is otherwise elastic and isotropic with surface Lam´e constants 
S  and S  whose numerical values are available in the literature. Additionally, it is 

assumed that the interface S is a coherent, perfectly bonded layer, where the strain S

ll  

in the tangential direction is equal to the tangential strain in the bulk matrix, i.e., 
S M

ll ll  . In this case, the condition  / /S

ll n lu u l      is a priori satisfied [5], 

where    is the curvature radius of the boundary S. 

The following conditions for the stresses are satisfied along the tangential and 

normal directions of the interface S, i.e., the local coordinate system described by the 

normal n and tangential l vector components as 

(7) 
S

M ll
nl

l





 


, and 

S
M ll
nn





  along S. 

The boundary condition (7) can be rewritten with respect to the tractions 

developed along S, see D o n g  and P a n  [3], R a n g e l o v  and D i n e v a  [10] as 

follows: 

(8) 
11

22

M

S

M

ut
T

ut

   
   

  
  along S, 

where 
2

1 2 32

ST T T T
l l

 
  

 
;  1 2

,

01
'

0

S

S

l

T N N


 

 
    

;  2

0
'

0

S

S
T N N





 
  

 
; 

3

0 0
'

0
T N N



 
  

 
;  

1 2

2 1

n n
N

n n

 
  
 

. 

In the above, 2S S S    , 
1S S 


 , M

i in n  , and 
2

2
, ,

l l

 

 
 respectively, are 

the first and second tangential derivatives, while the traction components that 

developed in the bulk matrix are denoted by M M

k kj jt n , and 'N  is the transpose of 

matrix N. Note that if 0S S   , the boundary condition (8) degenerates to the 

classical traction-free boundary condition for a line crack without surface elasticity 

effects.  

3. Boundary value problem and boundary integral equation 

The BVP is described by the governing Equation (3), the traction-free boundary 

condition along the free surface of the graded half-plane, Equation (5), by the 

boundary conditions along the nano-crack, Equation (8), and by the Sommerfeld 

radiation condition. The BVP problem is reformulated using a frequency-dependent, 

non-hypersingular traction-based Boundary Integral Equation (BIE) along the crack 

line S. Following [2, 10] we obtain the BIE, which is now an Integro-Differential 
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Equation (IDE), for the unknown displacement ju  on S as follows: 

(9) 
  



ff * sc

,

2 * sc * sc

,

( , ) ( , ) ( ) ( ) ( , , ) ( , )

( , , ) ( , ) ( , , ) ( , ) ( ) , .

M

rj r r ijkl i pk p

S

qk q l pk p l

t x t x C x n x x u

U x u x u n dS x S

 

   

      

          

   


  


 

In the above, rj  is the jump term depending on the local geometry at the source point 

on the surface, namely x S . Function * ( , , )qkU x    is the Green’s function for a 

point load acting in graded half-plane 2 0x  , see R a n g e l o v  and M a n o l i s  [13], 

while the corresponding stress tensor is 

*

*
( , , )

( , , ) ( )
qk

ijq ijkl

l

U x
x C x

 
 




 



*

*
( , , )

( , , ) ( )
qk

ijq ijkl

l

U x
x C x

 
 




 


. Finally, the pair ( , )x   represents the position 

vectors of the source and receiver points acting on the interior surfaces.  Note that the 

use of the Green’s function yields an integro-differential Equation (9) over the line 

of the nano-crack.  

Once displacements along the surface S are obtained, the displacements and 

stresses for the scattered wave field at any observation point x S  in the bulk 

material, including the displacement along the free horizontal line 2 0x  , can all be 

recovered using  the corresponding integral representation formulae 

(10) 

 

 

sc * sc

2

sc * sc

, 2

( , ) ( , , ) ( , ) , 0 \ ,

( , ) ( ) ( , , ) ( , ) , 0 \ .

j kij k i

S

pq pqkl ijk l i j

S

u x x u n dS x x S

x C x x u n dS x x S





    

     

    

    




 

The Stress Concentration Factors (SCF) close to the blunt crack-tip are 

evaluated as follows: 

(11) 

22 1
1 1ff

22 1

12 1
1 1ff

12 1

( , , )
( , , ) 2 ( ),

( , , )

( , , )
( , , ) 2 ( ).

( , , )

I

II

x d
F x d x a

x d

x d
F x d x a

x d

 
 

 

 
 

 






 




 



 

Note that the normalized SCFs are defined as I IF F   and II IIF F  . For the 

normal incident P-wave, both left and right SCFs are equal and we use notation 
*

I IF F  , *

II IIF F  . 

4. Numerical solution 

The numerical solution of the problem stated above is described in what follows, with 

all the necessary programming for recovering numerical results performed on the 

symbolic mathematics package Mathematica [6] 
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4.1. Numerical scheme 

The numerical technique developed for solving the IDE of Equation (9) for the nano-

cracked, viscoelastic, graded bulk material is based on the free surface, half-plane 

Green‘s function, see R a n g e l o v, D i n e v a  and M a n o l i s  [11]. The following 

procedural steps are now defined: 

(a)   Discretization of the crack surface and approximation of the nodal 

unknowns. No discretization is required along the free surface of the half-plane 

because the analytically derived Green‘s function satisfies the traction-free condition. 

The mesh employed consists of 14 quadratic-type Boundary Elements (BE) along the 

blunt nano-crack S. Special Quarter-Point Boundary Elements (QP-BE) are used for 

correctly modelling the crack-tip zones, a process well-defined in linear fracture 

mechanics. 

(b)  Numerical evaluation of the singularities in the kernels of the surface 

integrals. The following type of singularities exists in this numerical scheme: (i) weak 

singularity of ln r  type, and (ii) strong singularity of 1/ r  type, where the 

corresponding integrals are understood in the Cauchy principal value sense. 

(c)  Gaussian quadrature schemes for evaluating of all regular and singular 

integrals, including verification of the accuracy of computation. Also, a Quasi Monte 

Carlo scheme is used for evaluating the integrals with infinite boundaries that appear 

in the Green‘s function. This point demands the use of more powerful computers 

together with development of more scalable algorithms in the computational scheme 

based on the boundary integral equations. 

(d)  Assembly of the system of equations and formation of the BIEM influence 

matrices using the nodal collocation technique. 

(e)  Solution of the resulting algebraic systems of equations; 

(f) Post-processing of the results, primarily by back-substitution of the boundary 

solutions in Equation (10) to obtain results in the interior of the half-plane. 

4.2. Numerical examples  

In the numerical examples that follow, we define a dimensionless frequency as 

R/m d C , where the Rayleigh wave speed is denoted as 

 R (0.826 1.14 ) / (1 )SC C     , and 0.25   is Poisson’s ratio. Values for the 

material properties for the reference homogeneous bulk material are 
10

0 0 2.216 10 Pa     for the Lamé constants and 3 3

0 2 10 kg/m    for the 

mass density. For the nano-crack, we have that 
82.0428 10 mS   , and the end 

semi-circles ,l rS S   have a radius 0.0375c a , with 95 10 ma   . A dimensionless 

surface elasticity parameter 0/ (2 )S

Ss cc  , with 6.091S    N/m is also 

defined. Values for S  are usually determined by either atomic simulation 

techniques or by experiments. In our case, the value of 
S  is taken from Sharma et 

al. [15].  The case 0s   corresponds to the blunt crack without surface effects.  More 

specifically, parameter Sc  is the curvature radius in the QP-BEs used for correctly 
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modelling the crack-tip zones. For the case where the blunt nano-crack approaches 

the line crack geometry, the radius of curvature Sc  in the QP-BEs increases 

proportionally; conversely, when the value of surface parameter decreases to 0, we 

recover the case of the classical line crack.  The normalized inhomogeneity parameter 

that defines the departure from an equivalent homogeneous medium is 22b aa . The 

accuracy and convergence characteristics of the proposed numerical scheme is 

checked by keeping the well-known discretization rule of SV BE10l  , where SV  is 

the SV-wave length and BEl  is the maximum size of the Boundary Elements (BE) 

used. Detailed verification studies for a nano-crack in a graded half-plane and in an 

viscoelastic of Zener type material under time-harmonic plane waves are presented 

in the authors’ publications of R a n g e l o v, D i n e v a  and M a n o l i s  [11, 12]. 

In what follows, we present a parametric study illustrating the sensitivity of both 

the local SCF near the nano-crack and of the diffracted and scattered wave fields 

along the free surface of the graded half-plane to key model parameters. At first,  

Fig. 2 depicts the normalized SCF-I at a nano-crack in a homogeneous viscoelastic 

full plane (Fig. 2a, c, e) and in a homogeneous viscoelastic half-plane (Fig. 2b, d, f). 

The nano-crack is embedded at depth d/2a = 0.5 and all plots are in terms of the 

normalized frequency m of a normally incident P-wave. The following model 

parameters are kept fixed: The values for the Zener model are  = 0.5 and p = q = 1 

(Fig. 2a, b), or p = 5, q = 1 (Fig. 2c, d), or p = 1, q = 5 (Fig. 2e, f). Next, the surface 

parameter values are s = 0; 0.04;1. Fig. 2a-f illustrate clearly the magnitude of wave 

scattering by the free-surface of the viscoelastic homogeneous half-plane on the 

zones of the dynamic local SCF near the nano-crack. This scattering phenomenon by 

the free surface of the half-plane has a strong influence on both amplitudes and 

resonance frequencies in the frequency interval under consideration. Fig. 2a-f all 

clearly show that dynamic SCF depend on the material viscosity parameters p and q, 

on the frequency of the incident wave, on the surface elasticity effects due to 

existence of a nano-crack and on the scattering effects due to presence of a free-

surface boundary. 

The effect of viscoelasticity can be seen in Fig. 3, where the normalized SCF-I  
for a nano-crack embedded at d/2a = 1.5  in a quadratically graded half-plane, which 

is either elastic isotropic (Fig. 3a) or viscoelastic isotropic with Zener model 

parameters p = 5, q = 1 (Fig. 3b), versus normalized frequency m of a normally 

incident P-wave. In Fig. 3, the following fixed parameters values are used: The 

dimensionless surface parameter is s=0.14 and the normalized material 

inhomogeneity parameter values are b = −0.5 and b = −1. Fig. 3 clearly shows that 

both material inhomogeneity and viscosity, interacting with the frequency of the 

dynamic load, are able to change the amplitude-frequency characteristics of the SCF 

near nano-crack in measurable way. Essentially, these two characteristics work in 

opposite ways, with inhomogeneity resulting in continuous scattering of the incoming 

wave resulting in localized peaks, while viscoelasticity smoothens the wave motion. 
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Fig. 2. Normalized SCF-I of a nano-crack in (a), (c), (e) a viscoelastic full plane and (b), (d), (f) in a 

viscoelastic half-plane for a crack depth d/2a = 0.5 versus normalized frequency m of a normally 

incident P-wave. Zener model fixed values are  = 0.5 and p = q = 1 in (a), (b), or p = 5, q = 1 in  

(c), (d), or p = 1, q = 5 in (e), (f). Fixed values of the surface parameters are s = 0, 0.04, 1 

 
 

Fig. 3. Normalized SCF-I for a nano-crack embedded at depth d/2a = 1.5 in an inhomogeneous elastic 

(a), and viscoelastic (b) with parameter values of p = 5, q = 1 half-plane for fixed values of the surface 

parameter s = 0.14 and the inhomogeneity parameter b = –1.0, –0.5 
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Finally, Fig. 4 presents the normalized, horizontal  displacement  amplitude |u1 | 

of the scattered surfaces wave at observer point A(−a, 0) versus normalized  

frequency m of a normally incident P-wave  in the homogeneous elastic (Fig. 4a) and 

in the homogeneous viscoelastic (Fig. 4b) half-plane with an embedded nano-crack 

at depth d/2a = 1.5. As before, the following surface parameter values are used:  

s = 0; ±0.029.  For the viscoelastic case, the Zener material parameters are α=0.5, 

p=1, q=5. Again, the sensitivity of the scattered and diffracted wave fields that 

develop in the bulk material to viscosity, to surface elasticity effects because of the 

nano-crack and to the frequency of the incoming dynamic excitation are clearly 

illustrated in Fig 4. All things being equal, we see that the localized displacement 

response peaks in the inhomogeneous material occur at normalized frequencies that 

are quite higher than those that are observed when the material is viscoelastic. 

  
Fig. 4. Normalized displacement amplitude |u1| at observer point A(–a, 0) versus normalized frequency 

m in a graded elastic (a), and viscoelastic (b), with p = 5, q = 1 half-plane containing a nano-crack at  

depth d/2a = 1.5. Fixed values for the surface parameters are s = 0.14 and for the inhomogeneity 

parameter are b= –1.0, –0.5 

5. Conclusions 

A two-dimensional, nano-cracked solid with free-surface embedded in a 

quadratically graded, viscoelastic material is studied under time-harmonic 

conditions.  The non-hypersingular traction BIEM formulation is used in conjunction 

with both the closed form, frequency dependent Green’s function for a graded half-

plane and the surface-elasticity model of Gurtin-Murdoch. Following the 

mathematical formulation and numerical solution, an extensive parametric study was 

conducted to investigate the sensitivity of the resulting scattered elastic wave and 

stress concentration fields to the following key problem parameters: Material 

inhomogeneity, viscosity, and interaction effects between the crack and the free 

surface of the material, all under the presence of incident waves. 
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