
 94

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 20, No 6

Special Issue on New Developments in Scalable Computing

Sofia 2020 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2020-0064

Performance Analysis of a Scalable Algorithm for 3D Linear

Transforms on Supercomputer with Intel Processors/Co-

Processors

Ivan Lirkov

Institute of Information and Communication, Technologies, Bulgarian Academy of Sciences, 1113 Sofia,

Bulgaria

E-mail: ivan@parallel.bas.bg

Abstract: Practical realizations of 3D forward/inverse separable discrete

transforms, such as Fourier transform, cosine/sine transform, etc. are frequently the

principal limiters that prevent many practical applications from scaling to a large

number of processors. Existing approaches, which are based primarily on 1D or 2D

data decompositions, prevent the 3D transforms from effectively scaling to the

maximum (possible/available) number of computer nodes. A highly scalable

approach to realize forward/inverse 3D transforms has been proposed. It is based on

a 3D decomposition of data and geared towards a torus network of computer nodes.

The proposed algorithms requires compute-and-roll time-steps, where each step

consists of an execution of multiple GEMM operations and concurrent movement of

cubical data blocks between nearest neighbors. The aim of this paper is to present an

experimental performance study of an implementation on high performance

computer architecture.

Keywords: 3D linear transforms, parallel implementation, Intel processors/

co-processors.

1. Introduction

Three-Dimensional (3D) Discrete Transforms (DT) such as Fourier transform,

cosine/sine transform, etc., are known to play a fundamental role in many application

areas, such as spectral analysis, digital filtering, signal and image processing, data

compression, medical diagnostics, etc. Continuously increasing demands for high

speed computing in a constantly increasing number of many real-world applications

have stimulated the development of a number of “fast algorithms”, such as the Fast

Fourier Transform (FFT), characterized by dramatic reduction of arithmetic

complexity. However, further reduction of execution time is possible only by using

parallel implementation.

 95

There exist three different approaches to parallel implementation of the 3D

forward/inverse discrete transforms. Two of them are particularly well suited for the

Fourier transform. The first one is the 1D or “slab” decomposition of the initial 3D

data. In this approach, the data is divided into 2D slabs. The scalability of the slab-

based approach is limited by the number of data elements along a single dimension

of the 3D transform. The second approach is the 2D or “pencil” decomposition, of a

3D initial data, among a 2D array of computer nodes. This approach increases the

maximum number of nodes that can be effectively used in computations.

The last approach is the 3D or “cube” decomposition, which was recently

proposed in [1]. The 3D or “cubic” decomposition of an initial data among computer

nodes, allows a 3D data “cube” to be assigned to each computer node. It is easy to

realize that the theoretical scalability is further improved. In this approach, blocked

GEMM-based algorithms are used to compute the basic one-dimensional N-size

transform, not on a single but on the cyclically interconnected nodes of a 3D torus

network. In this way, the proposed algorithm integrates local intra-node computation

with a nearest-neighbour inter-node communication, at each step of the three-

dimensional processing. It is important to observe that the proposed algorithm, with

its 3D data decomposition, and the torus-oriented communication scheme,

completely eliminates global communication. In addition, computation and local

communication can be overlapped. Finally, note that in the considered approach, the

3D transform is represented as three chained sets of cubical tensor-by-matrix or

matrix-by-tensor multiplications, which are executed in a 3D torus network of

computer nodes by the fastest and extremely scalable orbital algorithms.

The main contribution of this paper is to experimentally evaluate the

performance of the latter algorithm. To do this, we have implemented overlapping of

computation and communication for the 3D data decomposition and used GEMM

kernels available. The experimental performance of the 3D Discrete Cosine

Transform (DCT) and Discrete Fourier Transform (DFT), with the 3D data

decomposition, has been evaluated on a supercomputer cluster.

2. 3D separable transform

Let X = [x(n1, n2, n3)], 0 ≤n1, n2, n3 < N, be an N×N×N cubical grid of input data. A

separable forward 3D transform of X is another cubical grid of an N×N×N data

Y = [y(k1, k2, k3)], where for all 0 ≤ k1, k2, k3 < N:

1 2 3

1 1 1

1 2 3 1 2 3 1 1 2 2 3 3

0 0 0

(, ,) (, ,) (,) (,) (,).
N N N

n n n

y k k k x n n n c n k c n k c n k

A separable inverse, or backward, 3D transform of a tensor Y = [y(k1, k2, k3)] is

expressed as:

1 2 3

1 1 1

1 2 3 1 2 3 1 1 2 2 3 3

0 0 0

(, ,) (, ,) (,) (,) (,).
N N N

k k k

x n n n y k k k c n k c n k c n k

The 3D transform can be split into three data dependent sets of 1D transforms.

At the first stage, the 1D transform of x(n1, n2, :) is performed for all (n1, n2) pairs, as

a block tensor-by-matrix multiplication. At the second stage, the 1D transform of

 96

v(:, n2, k3) is implemented for all (n2, k3) pairs, as the second block tensor-by-matrix

multiplication. At the third stage, the 1D transform of w(k1, :, k3) is implemented for

all (k1, k3) pairs, as the third block tensor-by-matrix multiplication.

3. Parallel implementation of the algorithm

The parallel implementation of the proposed algorithm is described in [1]. Our

implementation of the parallel algorithm is described in [2]. It should be noted that

our implementation is a modification of the parallel algorithms proposed in [1]. The

main differences between our implementation and the original algorithm are:

1. The implemented parallel algorithm works only for the 3D DCT and the 3D

DFT;

2. The proposed implementation uses additional arrays to store elements of the

coefficient matrix C. In the case of the DCT, we use one array with 4N elements;

while for the DFT two arrays with N elements each. In this way, we avoid rolling the

coefficient matrix. In other words, we simplify the communication, while paying the

price of somewhat increasing the total memory utilization.

Since the tensor-by-matrix, or the matrix-by-tensor, multiplications can be

expressed as the set of matrix-by-matrix multiplications, we can use existing GEMM

subroutines, from the BLAS library [3], to compute the 3D transform.

There exist two possible ways to compute the tensor-by-matrix multiplication

on computers with multi-core processors. The first one is to use a multi-threaded

library, such as the Intel Math Kernel Library (MKL, see [4]). Here, each slice of the

tensor is computed by multiple threads. The other possible approach is to use

OpenMP. In the current implementation, we have linked our code to the multi-

threaded library for the parallelization on a single (multi-core) node of the computer

system.

4. Experimental results

A portable parallel code was designed and implemented in C. The parallelization was

based on the MPI standard [5, 6]. In the code, we used the BLAS subroutines

SGEMM, DGEMM, CGEMM, and ZGEMM to perform matrix-by-matrix

multiplication. In order to obtain a better mapping of the processors to the physical

interconnect topology of computers actually used in experiments, functions

MPI_Dims_create and MPI_Cart_create were used to create a logical 3D Cartesian

grid of processors.

The parallel code has been tested on the following system: the supercomputer

Avitohol at IICT-BAS (see [7] for details). The computer system Avitohol is

constructed with HP Cluster Platform SL250S GEN8. It has 150 servers, and two

8-core Intel Xeon E5-2650 v2 8C processors and two Intel Xeon Phi 7120P

coprocessors per node. Each processor runs at 2.6 GHz. Processors within each node

share 64 GB of memory. Each Intel Xeon Phi has 61 cores, runs at 1.238 GHz, and

has 16 GB of memory. Nodes are interconnected with a high-speed InfiniBand FDR

network. We used the Intel C compiler, and compiled the code using the following

 97

options: “-O3 -qopenmp” for the processors and “-O3 -qopenmp -mmic” for the

coprocessors. To use the BLAS subroutines, we linked our code to the optimized

multi-threaded Intel MKL library. Intel MPI was used to execute the code on the

Avitohol computer system.

In our experiments, times have been collected using the MPI provided timer,

and we report the best results from multiple runs. In the following tables, we report

the elapsed (wall-clock) time in seconds.

Table 1. Execution time (in seconds) for the 3D discrete cosine transform using only

processors of the Avitohol

N
Number of nodes

1 2 4 8 16 32 64

Single precision

Forward transform

200 0.0760 0.0539 0.0377 0.0383 0.0229 0.0382 0.0430

400 0.7918 0.4543 0.2868 0.1728 0.1300 0.0953 0.0858

600 3.5642 2.0189 1.1939 0.6426 0.4223 0.2949 0.2033

800 10.5593 5.7550 3.1507 1.7097 1.0306 0.6472 0.4305

1000 24.4799 13.2777 7.2777 3.9019 2.3329 1.4249 0.8147

1200 49.9908 26.1017 14.1655 7.5324 4.4960 2.6249 1.4916

1600 78.8522 41.6059 21.7961 12.3199 6.8936 3.7470

2000 99.5842 50.8931 28.2158 15.5731 8.6936

Backward transform

200 0.0578 0.0365 0.0216 0.0132 0.0093 0.0109 0.0068

400 0.7034 0.4019 0.2266 0.1300 0.0880 0.0568 0.0473

600 3.3402 1.8719 1.0193 0.5534 0.3539 0.2301 0.1477

800 9.9892 5.3489 2.8409 1.5194 0.8993 0.5489 0.3376

1000 23.2535 12.5482 6.6254 3.5717 2.1258 1.2804 0.7387

1200 47.9282 24.7840 13.0700 6.9643 4.1524 2.3548 1.3040

1600 75.7462 38.6973 20.3578 11.5351 6.5202 3.6148

2000 94.4404 47.9034 26.8596 14.7392 8.1383

Double precision

Forward transform

200 0.1449 0.0930 0.0646 0.0482 0.0396 0.0451 0.0540

400 1.6184 0.9230 0.5462 0.3293 0.2197 0.1373 0.1230

600 7.2401 3.9339 2.2233 1.2521 0.7916 0.4978 0.3228

800 21.3262 11.4433 6.3369 3.4622 2.1033 1.2351 0.7732

1000 51.5733 26.4074 14.4434 7.7706 4.6434 2.6952 1.6234

1200 110.0560 52.9195 28.4283 15.1895 8.6458 4.9744 2.7664

1600 87.1884 44.3340 24.5492 13.5643 7.7001

2000 56.4890 30.6572 16.9175

Backward transform

200 0.1190 0.0698 0.0393 0.0218 0.0156 0.0119 0.0104

400 1.4522 0.8111 0.4456 0.2619 0.1689 0.1058 0.0713

600 6.7475 3.6326 1.9578 1.0926 0.6862 0.4143 0.2865

800 20.2844 10.7186 5.6413 3.0990 1.8295 1.0747 0.6505

1000 49.1480 25.0125 13.0928 7.0599 4.1540 2.4528 1.4205

1200 101.8070 50.5865 26.1044 13.9867 7.9348 4.5263 2.5333

1600 82.1612 41.9168 23.0593 12.7839 7.2690

2000 53.7557 29.2964 16.0420

 98

Tables 1 and 2 show the results collected on the Avitohol using only Intel Xeon

processors. The main memory on one node is 64 GB and allows execution of the

DCT algorithm for N = 200, 400, ..., 1200. The DFT algorithm requires more memory

and the limit for the execution on one node is N = 1000. For larger problems we used

the distributed memory on more nodes. For example, for DFT with N = 2000 the

algorithm requires the memory of at least 16 nodes. The reported execution time for

N = 200 shows that the problem is small and can be executed on one node (no need

for parallelization). Here, there is no significant improvement from using two or more

nodes. However, for the problems of size N = 800, 1000, 1200 a significant

performance gain can be observed. Moreover, for 3D DFT with double precision

super-linear speed-up is observed for N = 1000 on up to 8 nodes.

Table 2. Execution time (in seconds) for the 3D discrete Fourier transform using only

processors of the Avitohol

N
Number of nodes

1 2 4 8 16 32 64

Single precision

Forward transform

200 0.2067 0.1258 0.0897 0.0646 0.0493 0.0588 0.0886

400 2.6787 1.4327 0.8654 0.4731 0.3066 0.1958 0.1228

600 12.8205 6.6810 3.6997 1.8912 1.1365 0.6946 0.4571

800 37.6882 19.9276 10.5935 5.5964 3.1616 1.8203 1.1089

1000 89.3692 46.4069 24.6894 12.9602 7.2873 4.1502 2.3694

1200 96.4621 50.2716 26.4370 14.3301 8.0371 4.2275

1600 152.9335 77.4458 41.4072 22.2047 12.1978

2000 96.3475 51.1302 27.6908

Backward transform

200 0.1776 0.1025 0.0579 0.0325 0.0214 0.0215 0.0158

400 2.5317 1.3308 0.7188 0.3885 0.2352 0.1483 0.1085

600 12.4051 6.5596 3.4169 1.7331 1.0117 0.5914 0.3761

800 36.8481 19.4619 10.0323 5.2546 2.8643 1.6462 0.8828

1000 87.4686 45.3237 23.2665 12.3150 6.8326 3.7944 2.2520

1200 93.3873 48.3290 25.3269 13.8271 7.5106 4.1530

1600 148.0450 75.8290 40.7702 21.6635 11.8671

2000 94.6919 49.9192 26.6086

Double precision

Forward transform

200 0.4485 0.2545 0.1686 0.0971 0.0897 0.0655 0.0672

400 5.9599 3.1502 1.7757 0.9420 0.5871 0.3953 0.2616

600 28.5156 14.7995 7.7479 3.9093 2.2731 1.3496 0.7991

800 86.9170 45.2880 23.6875 12.2694 6.7581 3.8764 2.1842

1000 238.4780 107.3896 56.2608 29.2851 15.6836 8.7244 4.8547

1200 115.2575 58.9024 30.9047 16.3460 8.6596

1600 94.2719 48.8668 26.2570

Backward transform

200 0.3976 0.2212 0.1356 0.0649 0.0455 0.0288 0.0243

400 5.6193 2.9700 1.5695 0.8475 0.4922 0.2879 0.1865

600 27.3639 14.1340 7.2135 3.6298 2.1130 1.2073 0.6771

800 84.5136 43.6104 22.6527 11.4513 6.2700 3.5147 2.1582

1000 216.1370 104.4850 53.0580 27.9994 14.9497 8.3255 4.6314

1200 110.3050 56.8326 29.5519 15.6329 8.2157

1600 91.7581 47.6514 25.0236

 99

Tables 3 and 4 contain the execution time using only Intel Xeon Phi. Here one

can observe that the algorithms run faster using one coprocessor than using 2, 4, 8

coprocessors. It is clear that the communication time between coprocessors is large

and there is no improvement using the parallel implementation of the algorithms.

Table 3. Execution time (in seconds) for the 3D discrete cosine transform using only

coprocessors of the Avitohol

N
Number of coprocessors

1 2 4 8 16 32 64

Single precision

Forward transform

200 0.5124 0.6388 0.6370 0.4128 0.3938 0.3576 0.2495

400 1.2582 1.9077 1.9876 1.4857 1.3592 1.1430 0.7298

600 3.7672 5.4232 5.4707 3.8514 3.5044 2.7911 1.8514

800 8.5344 13.5098 11.9203 8.0540 7.5502 5.7663 3.8314

1000 26.7401 23.8716 16.2240 14.3935 10.6471 6.9524

1200 41.1496 29.6708 24.2277 18.2094 11.7408

1600 69.3336 59.1269 41.4999 26.6460

2000 115.3765 81.7667 52.4187

Backward transform

200 0.0642 0.1746 0.2181 0.1598 0.1425 0.1228 0.0836

400 0.4447 1.3052 1.4283 1.0150 0.9230 0.7501 0.4711

600 1.8362 4.4320 4.5303 3.3942 3.0188 2.3530 1.4862

800 4.8155 11.4296 10.4895 7.7898 6.9923 5.3358 3.3693

1000 23.5476 21.2399 15.2939 13.6295 10.2196 6.4541

1200 36.8365 27.3000 23.6922 17.5493 11.2333

1600 64.4491 57.4970 40.9009 26.0027

2000 112.4650 80.4906 51.5106

Double precision

Forward transform

200 0.5582 0.7781 0.8064 0.5260 0.5054 0.4507 0.3163

400 2.5085 3.3958 3.2535 2.4080 2.2024 1.7706 1.1271

600 7.7727 11.1460 10.3057 7.0143 6.3357 4.7157 3.1787

800 27.1808 24.2012 16.1103 14.4354 10.5462 6.9842

1000 48.4785 34.2117 28.2551 20.3837 13.1819

1200 59.5258 49.7826 35.1730 22.3118

1600 118.5665 83.4042 53.2028

2000 105.3077

Backward transform

200 0.0929 0.3182 0.3482 0.2501 0.2369 0.2030 0.1229

400 0.9738 2.5964 2.6336 1.9374 1.7742 1.3468 0.8450

600 4.4812 9.3757 8.9153 6.5473 5.8316 4.3498 2.7440

800 24.3902 21.5345 15.2626 13.9939 10.1905 6.5200

1000 42.7577 32.2109 27.9494 19.8042 12.6917

1200 56.4205 48.3041 34.6965 21.8462

1600 117.8540 82.2662 52.1192

2000 104.8230

 100

Table 4. Execution time (in seconds) for the 3D discrete Fourier transform using only

coprocessors of the Avitohol

N
Number of coprocessors

1 2 4 8 16 32 64

Single precision

Forward transform

200 0.6733 0.8424 0.8686 0.5990 0.5611 0.5129 0.3537

400 2.6020 3.6413 3.5441 2.4803 2.2891 1.8462 1.1848

600 8.1777 11.9750 10.3334 7.2245 6.5103 4.9759 3.2558

800 27.8812 24.3975 16.9994 14.7433 10.8582 7.0387

1000 49.5779 35.6633 28.9276 20.9952 13.5672

1200 61.3304 49.5451 35.3441 22.8684

1600 118.7209 83.9047 53.5311

2000 105.9995

Backward transform

200 0.1423 0.3791 0.4080 0.3115 0.2805 0.2506 0.1830

400 1.1092 2.7578 2.7353 1.9834 1.8473 1.4136 0.9093

600 4.7513 9.6823 9.1412 6.6159 6.0284 4.4975 2.8664

800 24.6317 21.8166 16.1799 14.0978 10.3299 6.5010

1000 44.4229 32.3628 27.8660 19.8807 12.8469

1200 57.0783 48.8767 34.6318 22.2119

1600 116.7550 82.6160 52.6932

2000 104.9290

Double precision

Forward transform

200 0.8991 1.1888 1.2154 0.7955 0.7516 0.6587 0.4543

400 4.9907 7.0999 6.4597 4.4377 3.9776 3.0814 1.9723

600 24.1780 21.1313 14.2214 12.7873 9.0109 5.9362

800 51.2982 36.0511 29.5805 21.0108 13.5255

1000 74.3123 58.3255 41.1495 26.7309

1200 102.2205 71.1527 45.5205

Backward transform

200 0.3142 0.7203 0.7460 0.5714 0.5261 0.4479 0.2994

400 2.6119 5.6940 5.4064 3.9828 3.5879 2.6907 1.7472

600 21.6765 18.6295 13.3133 11.8331 8.7192 5.6127

800 45.0476 32.8309 28.7036 20.6122 13.1516

1000 67.0370 56.7831 40.8836 25.7711

1200 100.3330 70.5225 44.7571

 101

Tables 5 and 6 present times collected on the Avitohol using processors as well

as coprocessors. We made the experiments using 4 MPI processes on each node: 2

processes on processors and 2 processes on coprocessors. The results in Table 5 show

that again there is no improvement using the parallel implementation of the

algorithm. Conversely, we can see from Table 6 the execution time of the parallel

implementation of the algorithm for 3D DFT is better than the time of the sequential

algorithm.

Table 5. Execution time (in seconds) for the 3D discrete cosine transform using

processors and coprocessors of the Avitohol

N
Number of nodes

1 2 4 8 16 32

Single precision

Forward transform

200 1.0461 0.9174 0.7746 0.6689 0.5356 0.5219

400 5.7840 3.7579 2.5590 1.8448 1.1934 0.9889

600 19.8967 11.1379 7.0881 4.5794 2.9457 2.0704

800 47.7289 27.0011 15.7896 9.7563 5.9931 3.9820

1000 96.2926 54.0093 31.1242 18.5277 10.9908 7.0737

1200 172.6714 94.5210 54.0907 31.5976 18.3560 11.6593

1600 244.7497 134.0510 76.1986 42.2924 26.2381

2000 272.4915 152.2338 83.7523 51.7131

Backward transform

200 0.3160 0.0430 0.0309 0.0620 0.0742 0.0825

400 1.6914 0.6862 0.6055 0.4975 0.3279 0.2435

600 4.2980 2.6665 2.3685 1.8131 1.1951 0.8605

800 9.2476 6.1460 6.0348 4.4966 2.7682 2.0479

1000 19.5277 13.0295 12.2256 9.0832 5.3651 3.9084

1200 33.4088 22.9409 20.9885 16.0037 9.2687 6.9492

1600 57.2751 51.6913 37.6339 21.8078 16.4330

2000 101.5010 75.0368 43.7860 33.0999

Double precision

Forward transform

200 1.1424 0.9993 0.8713 0.7596 0.6030 0.5582

400 6.4779 4.4091 3.2350 2.3677 1.5319 1.2655

600 23.4372 14.2287 9.4932 6.2915 4.0761 2.9181

800 57.5915 34.4666 21.7705 13.9947 8.6594 5.9716

1000 119.0888 69.6325 43.1526 27.0916 16.0252 10.8204

1200 120.6609 76.2304 47.3631 27.6925 18.0780

1600 193.9048 114.2277 65.3929 42.6685

2000 130.9305 86.1398

Backward transform

200 0.5059 0.0926 0.0493 0.0863 0.0590 0.0650

400 2.8307 1.4440 1.3961 0.9820 0.6129 0.4586

600 8.1704 5.2758 5.0683 3.7362 2.2408 1.6889

800 19.7701 13.2111 12.4784 9.2636 5.4426 3.9528

1000 39.2059 26.1137 24.7823 18.1029 10.6478 7.8551

1200 45.5004 43.6663 31.7628 18.3667 13.7592

1600 104.6020 75.7410 43.5752 32.6848

2000 87.7772 63.9718

 102

Table 6. Execution time (in seconds) for the 3D discrete Fourier transform using

processors and coprocessors of the Avitohol

N
Number of nodes

1 2 4 8 16 32

Single precision

Forward transform

200 0.7257 0.8685 0.8249 0.7840 0.6487 0.6235

400 3.3775 2.8575 2.3905 1.9840 1.4639 1.2543

600 11.8316 8.5432 6.5842 4.8935 3.3939 2.6014

800 31.0851 21.1444 15.2111 10.7736 6.8629 5.1113

1000 67.0818 43.5047 30.1038 20.7041 12.9051 9.3361

1200 79.1054 54.5836 35.8087 22.2026 15.6287

1600 144.7684 87.8005 53.2528 36.7738

2000 107.5775 74.2922

Backward transform

200 0.6455 0.2580 0.0944 0.2067 0.1816 0.1652

400 2.7533 1.5852 1.5336 1.1868 0.7561 0.5598

600 8.2752 5.4929 5.3142 3.9293 2.3069 1.7960

800 21.0940 14.5966 12.8842 9.4114 5.4024 4.0734

1000 45.6085 29.0226 25.4616 18.8960 10.9276 7.7307

1200 50.1291 41.9014 32.7591 18.8841 13.7003

1600 102.9000 76.8544 44.2353 33.2393

2000 89.3026 65.2866

Double precision

Forward transform

200 0.8904 1.0013 0.9526 0.8867 0.7206 0.6537

400 5.9818 4.5343 3.8480 2.9957 2.0940 1.7015

600 22.0847 15.3617 12.3924 8.7832 5.6635 4.2174

800 60.0458 38.9667 29.2292 20.1616 12.8326 9.1372

1000 79.0519 60.2493 40.4552 25.1706 17.5858

1200 107.1120 70.7953 43.2693 31.0853

1600 104.4458 73.8282

Backward transform

200 1.0100 0.3795 0.3436 0.3092 0.2282 0.2239

400 4.9562 3.2677 2.9362 2.2727 1.4620 1.1017

600 17.4575 11.6983 10.7004 7.9430 4.6395 3.4696

800 45.2816 28.4348 25.3424 18.9955 10.9793 8.1076

1000 59.8817 50.8526 38.1525 21.9127 15.8757

1200 87.3476 66.0734 38.0652 27.1347

1600 90.2499 66.7974

Finally, in Fig. 1, we represent execution time of the code, which performs one

forward and one backward DFT. Results are presented for single and double

precision, for problems of size N = 1000 and N = 1600.

 103

Fig. 1. Execution time of code which performs forward and backward DFT for N = 1000, 1600

5. Conclusion

The aim of this paper was to analyze an implementation of a slightly simplified

version of an algorithm for 3D forward/inverse discrete transforms on supercomputer

with Intel processors/co-processors. The algorithm was designed for a 3D torus

network. The results on the supercomputer Avitohol show that a fast communication

network is needed in order to obtain parallel efficiency of the algorithm. On the basis

of the obtained results we can conclude that the proposed approach allows solution

of large 3D problems on a supercomputer.

Acknowledgments: This research was partially supported by grant DNTS/Russia 02/7 from the

Bulgarian NSF. This work has been accomplished with the partial support by the Grant No.

BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational

Program (2014-2020) and co-financed by the European Union through the European structural and

Investment funds.

R e f e r e n c e s

1. S e d u k h i n, S. G. Co-Design of Extremely Scalable Algorithms/Architecture for 3-Dimensional

Linear Transforms. Technical Report TR2012-001. The University of Aizu, July 2012.

2. L i r k o v, I., M. P a p r z y c k i, M. G a n z h a, S. S e d u k h i n, P. G e p n e r. Performance

Analysis of Scalable Algorithms for 3D Linear Transforms. – In: Proc. of M. Ganzha,

L. Maciaszek, M. Paprzycki, Eds. 2014 Federated Conference on Computer Science and

Information Systems, Annals of Computer Science and Information Systems, Vol. 2, IEEE,

2014, pp. 613-622. DOI: 10.15439/2014F374.

3. D o n g a r r a, J. J., J. D u C r o z, S. H a m m a r l i n g, I. S. D u f f. A Set of Level 3 Basic Linear

Algebra Subprograms. – ACM Transactions On Mathematical Software (TOMS), Vol. 16,

1990, No 1, pp. 1-17. DOI: 10.1145/77626.79170.

 104

4. Intel Math Kernel Library.

http://software.intel.com/en-us/articles/intel-mkl/
5. S n i r, M., S. O t t o, S. H u s s-L e d e r m a n, D. W a l k e r, J. D o n g a r r a. MPI: The Complete

Reference. Second Edition. Vol. 1. The MPI Core. Scientific and Engineering Computation

Series, Cambridge, Massachusetts, MIT Press, 1998. ISBN: 9780262692151.

6. W a l k e r, D., J. D o n g a r r a. MPI: A Standard Message Passing Interface. – Supercomputer,

Vol. 12, 1996, No 1, pp. 56-68. ISSN 0168-7875.

7. High-Performance Computing System – AVITOHOL.

http://www.hpc.acad.bg/avitohol/

Received: 15.09.2020; Second Version: 19.10.2020; Accepted: 23.10.2020

http://www.hpc.acad.bg/avitohol/

