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Abstract: Practical realizations of 3D forward/inverse separable discrete 

transforms, such as Fourier transform, cosine/sine transform, etc. are frequently the 

principal limiters that prevent many practical applications from scaling to a large 

number of processors. Existing approaches, which are based primarily on 1D or 2D 

data decompositions, prevent the 3D transforms from effectively scaling to the 

maximum (possible/available) number of computer nodes. A highly scalable 

approach to realize forward/inverse 3D transforms has been proposed. It is based on 

a 3D decomposition of data and geared towards a torus network of computer nodes. 

The proposed algorithms requires compute-and-roll time-steps, where each step 

consists of an execution of multiple GEMM operations and concurrent movement of 

cubical data blocks between nearest neighbors. The aim of this paper is to present an 

experimental performance study of an implementation on high performance 

computer architecture. 

Keywords: 3D linear transforms, parallel implementation, Intel processors/ 

co-processors. 

1. Introduction 

Three-Dimensional (3D) Discrete Transforms (DT) such as Fourier transform, 

cosine/sine transform, etc., are known to play a fundamental role in many application 

areas, such as spectral analysis, digital filtering, signal and image processing, data 

compression, medical diagnostics, etc. Continuously increasing demands for high 

speed computing in a constantly increasing number of many real-world applications 

have stimulated the development of a number of “fast algorithms”, such as the Fast 

Fourier Transform (FFT), characterized by dramatic reduction of arithmetic 

complexity. However, further reduction of execution time is possible only by using 

parallel implementation. 
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There exist three different approaches to parallel implementation of the 3D 

forward/inverse discrete transforms. Two of them are particularly well suited for the 

Fourier transform. The first one is the 1D or “slab” decomposition of the initial 3D 

data. In this approach, the data is divided into 2D slabs. The scalability of the slab-

based approach is limited by the number of data elements along a single dimension 

of the 3D transform. The second approach is the 2D or “pencil” decomposition, of a 

3D initial data, among a 2D array of computer nodes. This approach increases the 

maximum number of nodes that can be effectively used in computations. 

The last approach is the 3D or “cube” decomposition, which was recently 

proposed in [1]. The 3D or “cubic” decomposition of an initial data among computer 

nodes, allows a 3D data “cube” to be assigned to each computer node. It is easy to 

realize that the theoretical scalability is further improved. In this approach, blocked 

GEMM-based algorithms are used to compute the basic one-dimensional N-size 

transform, not on a single but on the cyclically interconnected nodes of a 3D torus 

network. In this way, the proposed algorithm integrates local intra-node computation 

with a nearest-neighbour inter-node communication, at each step of the three-

dimensional processing. It is important to observe that the proposed algorithm, with 

its 3D data decomposition, and the torus-oriented communication scheme, 

completely eliminates global communication. In addition, computation and local 

communication can be overlapped. Finally, note that in the considered approach, the 

3D transform is represented as three chained sets of cubical tensor-by-matrix or 

matrix-by-tensor multiplications, which are executed in a 3D torus network of 

computer nodes by the fastest and extremely scalable orbital algorithms. 

The main contribution of this paper is to experimentally evaluate the 

performance of the latter algorithm. To do this, we have implemented overlapping of 

computation and communication for the 3D data decomposition and used GEMM 

kernels available. The experimental performance of the 3D Discrete Cosine 

Transform (DCT) and Discrete Fourier Transform (DFT), with the 3D data 

decomposition, has been evaluated on a supercomputer cluster. 

2. 3D separable transform 

Let X = [x(n1, n2, n3)], 0 ≤n1, n2, n3 < N, be an N×N×N cubical grid of input data. A 

separable forward 3D transform of X is another cubical grid of an N×N×N data  

Y = [y(k1, k2, k3)], where for all 0 ≤ k1, k2, k3 < N: 
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A separable inverse, or backward, 3D transform of a tensor Y = [y(k1, k2, k3)] is 

expressed as: 
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The 3D transform can be split into three data dependent sets of 1D transforms. 

At the first stage, the 1D transform of x(n1, n2, :) is performed for all (n1, n2) pairs, as 

a block tensor-by-matrix multiplication. At the second stage, the 1D transform of  



 96 

v(:, n2, k3) is implemented for all (n2, k3) pairs, as the second block tensor-by-matrix 

multiplication. At the third stage, the 1D transform of w(k1, :, k3) is implemented for 

all (k1, k3) pairs, as the third block tensor-by-matrix multiplication. 

3. Parallel implementation of the algorithm 

The parallel implementation of the proposed algorithm is described in [1]. Our 

implementation of the parallel algorithm is described in [2]. It should be noted that 

our implementation is a modification of the parallel algorithms proposed in [1]. The 

main differences between our implementation and the original algorithm are: 

1. The implemented parallel algorithm works only for the 3D DCT and the 3D 

DFT; 

2. The proposed implementation uses additional arrays to store elements of the 

coefficient matrix C. In the case of the DCT, we use one array with 4N elements; 

while for the DFT two arrays with N elements each. In this way, we avoid rolling the 

coefficient matrix. In other words, we simplify the communication, while paying the 

price of somewhat increasing the total memory utilization. 

Since the tensor-by-matrix, or the matrix-by-tensor, multiplications can be 

expressed as the set of matrix-by-matrix multiplications, we can use existing GEMM 

subroutines, from the BLAS library [3], to compute the 3D transform. 

There exist two possible ways to compute the tensor-by-matrix multiplication 

on computers with multi-core processors. The first one is to use a multi-threaded 

library, such as the Intel Math Kernel Library (MKL, see [4]). Here, each slice of the 

tensor is computed by multiple threads. The other possible approach is to use 

OpenMP. In the current implementation, we have linked our code to the multi-

threaded library for the parallelization on a single (multi-core) node of the computer 

system. 

4. Experimental results 

A portable parallel code was designed and implemented in C. The parallelization was 

based on the MPI standard [5, 6]. In the code, we used the BLAS subroutines 

SGEMM, DGEMM, CGEMM, and ZGEMM to perform matrix-by-matrix 

multiplication. In order to obtain a better mapping of the processors to the physical 

interconnect topology of computers actually used in experiments, functions 

MPI_Dims_create and MPI_Cart_create were used to create a logical 3D Cartesian 

grid of processors. 

The parallel code has been tested on the following system: the supercomputer 

Avitohol at IICT-BAS (see [7] for details). The computer system Avitohol is 

constructed with HP Cluster Platform SL250S GEN8. It has 150 servers, and two  

8-core Intel Xeon E5-2650 v2 8C processors and two Intel Xeon Phi 7120P 

coprocessors per node. Each processor runs at 2.6 GHz. Processors within each node 

share 64 GB of memory. Each Intel Xeon Phi has 61 cores, runs at 1.238 GHz, and 

has 16 GB of memory. Nodes are interconnected with a high-speed InfiniBand FDR 

network. We used the Intel C compiler, and compiled the code using the following 
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options: “-O3 -qopenmp” for the processors and “-O3 -qopenmp -mmic” for the 

coprocessors. To use the BLAS subroutines, we linked our code to the optimized 

multi-threaded Intel MKL library. Intel MPI was used to execute the code on the 

Avitohol computer system. 

In our experiments, times have been collected using the MPI provided timer, 

and we report the best results from multiple runs. In the following tables, we report 

the elapsed (wall-clock) time in seconds. 

Table 1. Execution time (in seconds) for the 3D discrete cosine transform using only 

processors of the Avitohol 

N 
Number of nodes 

1 2 4 8 16 32 64 

Single precision 

Forward transform 

200 0.0760 0.0539 0.0377 0.0383 0.0229 0.0382 0.0430 

400 0.7918 0.4543 0.2868 0.1728 0.1300 0.0953 0.0858 

600 3.5642 2.0189 1.1939 0.6426 0.4223 0.2949 0.2033 

800 10.5593 5.7550 3.1507 1.7097 1.0306 0.6472 0.4305 

1000 24.4799 13.2777 7.2777 3.9019 2.3329 1.4249 0.8147 

1200 49.9908 26.1017 14.1655 7.5324 4.4960 2.6249 1.4916 

1600  78.8522 41.6059 21.7961 12.3199 6.8936 3.7470 

2000   99.5842 50.8931 28.2158 15.5731 8.6936 

Backward transform 

200 0.0578 0.0365 0.0216 0.0132 0.0093 0.0109 0.0068 

400 0.7034 0.4019 0.2266 0.1300 0.0880 0.0568 0.0473 

600 3.3402 1.8719 1.0193 0.5534 0.3539 0.2301 0.1477 

800 9.9892 5.3489 2.8409 1.5194 0.8993 0.5489 0.3376 

1000 23.2535 12.5482 6.6254 3.5717 2.1258 1.2804 0.7387 

1200 47.9282 24.7840 13.0700 6.9643 4.1524 2.3548 1.3040 

1600  75.7462 38.6973 20.3578 11.5351 6.5202 3.6148 

2000   94.4404 47.9034 26.8596 14.7392 8.1383 

Double precision 

Forward transform 

200 0.1449 0.0930 0.0646 0.0482 0.0396 0.0451 0.0540 

400 1.6184 0.9230 0.5462 0.3293 0.2197 0.1373 0.1230 

600 7.2401 3.9339 2.2233 1.2521 0.7916 0.4978 0.3228 

800 21.3262 11.4433 6.3369 3.4622 2.1033 1.2351 0.7732 

1000 51.5733 26.4074 14.4434 7.7706 4.6434 2.6952 1.6234 

1200 110.0560 52.9195 28.4283 15.1895 8.6458 4.9744 2.7664 

1600   87.1884 44.3340 24.5492 13.5643 7.7001 

2000     56.4890 30.6572 16.9175 

Backward transform 

200 0.1190 0.0698 0.0393 0.0218 0.0156 0.0119 0.0104 

400 1.4522 0.8111 0.4456 0.2619 0.1689 0.1058 0.0713 

600 6.7475 3.6326 1.9578 1.0926 0.6862 0.4143 0.2865 

800 20.2844 10.7186 5.6413 3.0990 1.8295 1.0747 0.6505 

1000 49.1480 25.0125 13.0928 7.0599 4.1540 2.4528 1.4205 

1200 101.8070 50.5865 26.1044 13.9867 7.9348 4.5263 2.5333 

1600   82.1612 41.9168 23.0593 12.7839 7.2690 

2000     53.7557 29.2964 16.0420 
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Tables 1 and 2 show the results collected on the Avitohol using only Intel Xeon 

processors. The main memory on one node is 64 GB and allows execution of the 

DCT algorithm for N = 200, 400, ..., 1200. The DFT algorithm requires more memory 

and the limit for the execution on one node is N = 1000. For larger problems we used 

the distributed memory on more nodes. For example, for DFT with N = 2000 the 

algorithm requires the memory of at least 16 nodes. The reported execution time for 

N = 200 shows that the problem is small and can be executed on one node (no need 

for parallelization). Here, there is no significant improvement from using two or more 

nodes. However, for the problems of size N = 800, 1000, 1200 a significant 

performance gain can be observed. Moreover, for 3D DFT with double precision 

super-linear speed-up is observed for N = 1000 on up to 8 nodes. 

Table 2. Execution time (in seconds) for the 3D discrete Fourier transform using only 

processors of the Avitohol 

N 
Number of nodes 

1 2 4 8 16 32 64 

Single precision 

Forward transform 

200 0.2067 0.1258 0.0897 0.0646 0.0493 0.0588 0.0886 

400 2.6787 1.4327 0.8654 0.4731 0.3066 0.1958 0.1228 

600 12.8205 6.6810 3.6997 1.8912 1.1365 0.6946 0.4571 

800 37.6882 19.9276 10.5935 5.5964 3.1616 1.8203 1.1089 

1000 89.3692 46.4069 24.6894 12.9602 7.2873 4.1502 2.3694 

1200  96.4621 50.2716 26.4370 14.3301 8.0371 4.2275 

1600   152.9335 77.4458 41.4072 22.2047 12.1978 

2000     96.3475 51.1302 27.6908 

Backward transform 

200 0.1776 0.1025 0.0579 0.0325 0.0214 0.0215 0.0158 

400 2.5317 1.3308 0.7188 0.3885 0.2352 0.1483 0.1085 

600 12.4051 6.5596 3.4169 1.7331 1.0117 0.5914 0.3761 

800 36.8481 19.4619 10.0323 5.2546 2.8643 1.6462 0.8828 

1000 87.4686 45.3237 23.2665 12.3150 6.8326 3.7944 2.2520 

1200  93.3873 48.3290 25.3269 13.8271 7.5106 4.1530 

1600   148.0450 75.8290 40.7702 21.6635 11.8671 

2000     94.6919 49.9192 26.6086 

Double precision 

Forward transform 

200 0.4485 0.2545 0.1686 0.0971 0.0897 0.0655 0.0672 

400 5.9599 3.1502 1.7757 0.9420 0.5871 0.3953 0.2616 

600 28.5156 14.7995 7.7479 3.9093 2.2731 1.3496 0.7991 

800 86.9170 45.2880 23.6875 12.2694 6.7581 3.8764 2.1842 

1000 238.4780 107.3896 56.2608 29.2851 15.6836 8.7244 4.8547 

1200   115.2575 58.9024 30.9047 16.3460 8.6596 

1600     94.2719 48.8668 26.2570 

Backward transform 

200 0.3976 0.2212 0.1356 0.0649 0.0455 0.0288 0.0243 

400 5.6193 2.9700 1.5695 0.8475 0.4922 0.2879 0.1865 

600 27.3639 14.1340 7.2135 3.6298 2.1130 1.2073 0.6771 

800 84.5136 43.6104 22.6527 11.4513 6.2700 3.5147 2.1582 

1000 216.1370 104.4850 53.0580 27.9994 14.9497 8.3255 4.6314 

1200   110.3050 56.8326 29.5519 15.6329 8.2157 

1600     91.7581 47.6514 25.0236 
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Tables 3 and 4 contain the execution time using only Intel Xeon Phi. Here one 

can observe that the algorithms run faster using one coprocessor than using 2, 4, 8 

coprocessors. It is clear that the communication time between coprocessors is large 

and there is no improvement using the parallel implementation of the algorithms. 

Table 3. Execution time (in seconds) for the 3D discrete cosine transform using only 

coprocessors of the Avitohol 

N 
Number of coprocessors 

1 2 4 8 16 32 64 

Single precision 

Forward transform 

200 0.5124 0.6388 0.6370 0.4128 0.3938 0.3576 0.2495 

400 1.2582 1.9077 1.9876 1.4857 1.3592 1.1430 0.7298 

600 3.7672 5.4232 5.4707 3.8514 3.5044 2.7911 1.8514 

800 8.5344 13.5098 11.9203 8.0540 7.5502 5.7663 3.8314 

1000  26.7401 23.8716 16.2240 14.3935 10.6471 6.9524 

1200   41.1496 29.6708 24.2277 18.2094 11.7408 

1600    69.3336 59.1269 41.4999 26.6460 

2000     115.3765 81.7667 52.4187 

Backward transform 

200 0.0642 0.1746 0.2181 0.1598 0.1425 0.1228 0.0836 

400 0.4447 1.3052 1.4283 1.0150 0.9230 0.7501 0.4711 

600 1.8362 4.4320 4.5303 3.3942 3.0188 2.3530 1.4862 

800 4.8155 11.4296 10.4895 7.7898 6.9923 5.3358 3.3693 

1000  23.5476 21.2399 15.2939 13.6295 10.2196 6.4541 

1200   36.8365 27.3000 23.6922 17.5493 11.2333 

1600    64.4491 57.4970 40.9009 26.0027 

2000     112.4650 80.4906 51.5106 

Double precision 

Forward transform 

200 0.5582 0.7781 0.8064 0.5260 0.5054 0.4507 0.3163 

400 2.5085 3.3958 3.2535 2.4080 2.2024 1.7706 1.1271 

600 7.7727 11.1460 10.3057 7.0143 6.3357 4.7157 3.1787 

800  27.1808 24.2012 16.1103 14.4354 10.5462 6.9842 

1000   48.4785 34.2117 28.2551 20.3837 13.1819 

1200    59.5258 49.7826 35.1730 22.3118 

1600     118.5665 83.4042 53.2028 

2000       105.3077 

Backward transform 

200 0.0929 0.3182 0.3482 0.2501 0.2369 0.2030 0.1229 

400 0.9738 2.5964 2.6336 1.9374 1.7742 1.3468 0.8450 

600 4.4812 9.3757 8.9153 6.5473 5.8316 4.3498 2.7440 

800  24.3902 21.5345 15.2626 13.9939 10.1905 6.5200 

1000   42.7577 32.2109 27.9494 19.8042 12.6917 

1200    56.4205 48.3041 34.6965 21.8462 

1600     117.8540 82.2662 52.1192 

2000       104.8230 
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Table 4. Execution time (in seconds) for the 3D discrete Fourier transform using only 

coprocessors of the Avitohol 

N 
Number of coprocessors 

1 2 4 8 16 32 64 

Single precision 

Forward transform 

200 0.6733 0.8424 0.8686 0.5990 0.5611 0.5129 0.3537 

400 2.6020 3.6413 3.5441 2.4803 2.2891 1.8462 1.1848 

600 8.1777 11.9750 10.3334 7.2245 6.5103 4.9759 3.2558 

800  27.8812 24.3975 16.9994 14.7433 10.8582 7.0387 

1000   49.5779 35.6633 28.9276 20.9952 13.5672 

1200    61.3304 49.5451 35.3441 22.8684 

1600     118.7209 83.9047 53.5311 

2000       105.9995 

Backward transform 

200 0.1423 0.3791 0.4080 0.3115 0.2805 0.2506 0.1830 

400 1.1092 2.7578 2.7353 1.9834 1.8473 1.4136 0.9093 

600 4.7513 9.6823 9.1412 6.6159 6.0284 4.4975 2.8664 

800  24.6317 21.8166 16.1799 14.0978 10.3299 6.5010 

1000   44.4229 32.3628 27.8660 19.8807 12.8469 

1200    57.0783 48.8767 34.6318 22.2119 

1600     116.7550 82.6160 52.6932 

2000       104.9290 

Double precision 

Forward transform 

200 0.8991 1.1888 1.2154 0.7955 0.7516 0.6587 0.4543 

400 4.9907 7.0999 6.4597 4.4377 3.9776 3.0814 1.9723 

600  24.1780 21.1313 14.2214 12.7873 9.0109 5.9362 

800   51.2982 36.0511 29.5805 21.0108 13.5255 

1000    74.3123 58.3255 41.1495 26.7309 

1200     102.2205 71.1527 45.5205 

Backward transform 

200 0.3142 0.7203 0.7460 0.5714 0.5261 0.4479 0.2994 

400 2.6119 5.6940 5.4064 3.9828 3.5879 2.6907 1.7472 

600  21.6765 18.6295 13.3133 11.8331 8.7192 5.6127 

800   45.0476 32.8309 28.7036 20.6122 13.1516 

1000    67.0370 56.7831 40.8836 25.7711 

1200     100.3330 70.5225 44.7571 
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Tables 5 and 6 present times collected on the Avitohol using processors as well 

as coprocessors. We made the experiments using 4 MPI processes on each node: 2 

processes on processors and 2 processes on coprocessors. The results in Table 5 show 

that again there is no improvement using the parallel implementation of the 

algorithm. Conversely, we can see from Table 6 the execution time of the parallel 

implementation of the algorithm for 3D DFT is better than the time of the sequential 

algorithm. 

Table 5. Execution time (in seconds) for the 3D discrete cosine transform using 

processors and coprocessors of the Avitohol 

N 
Number of nodes 

1 2 4 8 16 32 

Single precision 

Forward transform 

200 1.0461 0.9174 0.7746 0.6689 0.5356 0.5219 

400 5.7840 3.7579 2.5590 1.8448 1.1934 0.9889 

600 19.8967 11.1379 7.0881 4.5794 2.9457 2.0704 

800 47.7289 27.0011 15.7896 9.7563 5.9931 3.9820 

1000 96.2926 54.0093 31.1242 18.5277 10.9908 7.0737 

1200 172.6714 94.5210 54.0907 31.5976 18.3560 11.6593 

1600  244.7497 134.0510 76.1986 42.2924 26.2381 

2000   272.4915 152.2338 83.7523 51.7131 

Backward transform 

200 0.3160 0.0430 0.0309 0.0620 0.0742 0.0825 

400 1.6914 0.6862 0.6055 0.4975 0.3279 0.2435 

600 4.2980 2.6665 2.3685 1.8131 1.1951 0.8605 

800 9.2476 6.1460 6.0348 4.4966 2.7682 2.0479 

1000 19.5277 13.0295 12.2256 9.0832 5.3651 3.9084 

1200 33.4088 22.9409 20.9885 16.0037 9.2687 6.9492 

1600  57.2751 51.6913 37.6339 21.8078 16.4330 

2000   101.5010 75.0368 43.7860 33.0999 

Double precision 

Forward transform 

200 1.1424 0.9993 0.8713 0.7596 0.6030 0.5582 

400 6.4779 4.4091 3.2350 2.3677 1.5319 1.2655 

600 23.4372 14.2287 9.4932 6.2915 4.0761 2.9181 

800 57.5915 34.4666 21.7705 13.9947 8.6594 5.9716 

1000 119.0888 69.6325 43.1526 27.0916 16.0252 10.8204 

1200  120.6609 76.2304 47.3631 27.6925 18.0780 

1600   193.9048 114.2277 65.3929 42.6685 

2000     130.9305 86.1398 

Backward transform 

200 0.5059 0.0926 0.0493 0.0863 0.0590 0.0650 

400 2.8307 1.4440 1.3961 0.9820 0.6129 0.4586 

600 8.1704 5.2758 5.0683 3.7362 2.2408 1.6889 

800 19.7701 13.2111 12.4784 9.2636 5.4426 3.9528 

1000 39.2059 26.1137 24.7823 18.1029 10.6478 7.8551 

1200  45.5004 43.6663 31.7628 18.3667 13.7592 

1600   104.6020 75.7410 43.5752 32.6848 

2000     87.7772 63.9718 
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Table 6. Execution time (in seconds) for the 3D discrete Fourier transform using 

processors and coprocessors of the Avitohol 

N 
Number of nodes 

1 2 4 8 16 32 

Single precision 

Forward transform 

200 0.7257 0.8685 0.8249 0.7840 0.6487 0.6235 

400 3.3775 2.8575 2.3905 1.9840 1.4639 1.2543 

600 11.8316 8.5432 6.5842 4.8935 3.3939 2.6014 

800 31.0851 21.1444 15.2111 10.7736 6.8629 5.1113 

1000 67.0818 43.5047 30.1038 20.7041 12.9051 9.3361 

1200  79.1054 54.5836 35.8087 22.2026 15.6287 

1600   144.7684 87.8005 53.2528 36.7738 

2000     107.5775 74.2922 

Backward transform 

200 0.6455 0.2580 0.0944 0.2067 0.1816 0.1652 

400 2.7533 1.5852 1.5336 1.1868 0.7561 0.5598 

600 8.2752 5.4929 5.3142 3.9293 2.3069 1.7960 

800 21.0940 14.5966 12.8842 9.4114 5.4024 4.0734 

1000 45.6085 29.0226 25.4616 18.8960 10.9276 7.7307 

1200  50.1291 41.9014 32.7591 18.8841 13.7003 

1600   102.9000 76.8544 44.2353 33.2393 

2000     89.3026 65.2866 

Double precision 

Forward transform 

200 0.8904 1.0013 0.9526 0.8867 0.7206 0.6537 

400 5.9818 4.5343 3.8480 2.9957 2.0940 1.7015 

600 22.0847 15.3617 12.3924 8.7832 5.6635 4.2174 

800 60.0458 38.9667 29.2292 20.1616 12.8326 9.1372 

1000  79.0519 60.2493 40.4552 25.1706 17.5858 

1200   107.1120 70.7953 43.2693 31.0853 

1600     104.4458 73.8282 

Backward transform 

200 1.0100 0.3795 0.3436 0.3092 0.2282 0.2239 

400 4.9562 3.2677 2.9362 2.2727 1.4620 1.1017 

600 17.4575 11.6983 10.7004 7.9430 4.6395 3.4696 

800 45.2816 28.4348 25.3424 18.9955 10.9793 8.1076 

1000  59.8817 50.8526 38.1525 21.9127 15.8757 

1200   87.3476 66.0734 38.0652 27.1347 

1600     90.2499 66.7974 

 
Finally, in Fig. 1, we represent execution time of the code, which performs one 

forward and one backward DFT. Results are presented for single and double 

precision, for problems of size N = 1000 and N = 1600. 
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Fig. 1. Execution time of code which performs forward and backward DFT for N = 1000, 1600 

5. Conclusion 

The aim of this paper was to analyze an implementation of a slightly simplified 

version of an algorithm for 3D forward/inverse discrete transforms on supercomputer 

with Intel processors/co-processors. The algorithm was designed for a 3D torus 

network. The results on the supercomputer Avitohol show that a fast communication 

network is needed in order to obtain parallel efficiency of the algorithm. On the basis 

of the obtained results we can conclude that the proposed approach allows solution 

of large 3D problems on a supercomputer. 
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