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Abstract: On the base of the Half Logistic – G family of distributions proposed by 

C o r d e i r o, A l i z a d e h  and M a r i n h o  [2] some mathematical properties are 

investigated by A l m a r a s h i  et al. [1]. We study the “saturation” to the horizontal 

asymptote: t=1 by the new growth function M(t) in the Hausdorff sense. Similar to 

our previous studies [3-6], in this article we will define and analyze in detail the new 

family. We will call this family the “Half-Logistic-Inverse-Rayleigh cdf with 

Polynomial Variable Transfer” (HLIRPVT) cdf. Section 3 shows the potentiality of 

proposed new model under four real data sets. Some numerical examples using CAS 

MATHEMATICA are given.  

Keywords: Half-Logistic-Inverse-Rayleigh (HLIR) cdf, Half-Logistic-Inverse-

Rayleigh cdf with Polynomial Variable Transfer (HLIRPVT) cdf, “Saturation” in 

Hausdorff sense, Hausdorff distance, Upper and lower bounds. 

1. Introduction and preliminaries 

Definition 1. In [1] authors proposed the following new Half-Logistic-Inverse-

Rayleigh (HLIR) cdf: 
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where > 0, > 0, > 0,t    and proved the following inequalities for any, 

, , > 0t   :  
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where ( )M t  is the Exponentiated Inverted Rayleigh cdf, and ( )M t  is a weighted 

version of it, which remains a valid cdf. 

During the last two decades or so, various approaches of determining new 

families of distributions have been introduced for increasing chances of modeling 

practical data that come from a wide variety of disciplines. 

The reader can find a detailed bibliography in article [7]. 

In this paper we study some properties of the new family. 

When studying the intrinsic properties of the M(t), it is also appropriate to study 

the “saturation” to the horizontal asymptote. 

Definition 2. Similar to our previous studies [3-6], in this article we will define 

and analyze in detail the following new family:  
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We will call this family the “Half-Logistic-Inverse-Rayleigh cdf with 

Polynomial Variable Transfer” (HLIRPVT) cdf. 

The rest of the paper is structured as follows. In Section 2 we study the 

“saturation” to the horizontal asymptote: = 1t  by the growth functions (1) and (3) in 

the Hausdorff sense [19]. 

Section 3 shows the potentiality of proposed new model based on the insertion 

of “correcting amendments” of polynomial-type (3) for the estimation procedure 

under two real data sets. 

2. Main results 

1. For the ”saturation” 1d  to the horizontal asymptote: = 1t  by the growth function 

(1) in the Hausdorff sense we have  
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or, equivalently,  
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The following theorem gives upper bound for 1d . 

Theorem 1. The “saturation” 1d  satisfies the following inequality for 

> 0, > 0  :  

(6)    
1

2 1 2
1 1,< 2 := .rd d    

P r o o f: We consider the interval [0, ) . 

Clearly, > 0G  and ( )G t  is increasing function of [0, )t   (Fig. 1). 

 

  
Fig. 1. The function G for = 2.3 and  = 0.05; the “saturation” d1 = 0.090098 

   

Hence, if (5) has a root, then it is unique. 

Using the inequalities  
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we have 



 85 

2 2 1 2

1 1
1 2

1 1

22
( ) > = .

d d
G d

d d

  





 

  
 

 
 

The positive root of the expression in the numerator is 

 
1

2 1 2
1,2 := rd   , 

Then 
1,( ) > 0rG d . 

This completes the proof of the theorem. 

2. The one-sided Hausdorff distance d  between the Heaviside function 
0
( )th t  

and the model (1) satisfies the relation  

(7)   0( ) = 1 ,M t d d   

where 0t  is the “median level”, i.e., 
0

1
( ) =

2
M t . Some computational examples using 

model (1) are presented in Figs 2 and 3. 
 

  
Fig. 2. The model (1) and two-sided estimations (2) for fixed = 0.05,  = 2.3,  and 

0 = 0.0508144,t   

Housdorf distance = 0.0526852d  

 

   
Fig. 3. The model (1) and two-sided estimations (2) for fixed = 0.01,  = 0.9,  and 0 = 0.0169128,t   

Housdorf distance = 0.0551343d  
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From Figs 2, 3 it can be seen that the characteristic d  and estimations (2) can 

be used as “confidence bounds”, which are extremely useful for the specialists in the 

choice of model for cumulative data approximating in areas of Biostatistics, 

Population dynamics, Growth theory, Debugging and Test theory, Computer viruses 

propagation, Insurance mathematics and Financial Mathematics. 

3. Investigations on the “Half-Logistic-Inverse-Rayleigh cdf with Polynomial 

Variable Transfer” (HLIRPVT) cdf (3). 

Let 0t  is the “median level”. The one-sided Hausdorff distance 2d  between 

Heaviside function 
0

th  and cumulative function (3) satisfies  

1 2 1 2( ; , , ) = 1 .nM d a a d  

The question of finding precise two-sided estimates for the magnitude of the 

Hausdorff approximation [19] of the Heaviside function with classes of the indicated 

family 1 1( ; , , )nM t a a  remains open. 

The task is greatly complicated by the intrinsic properties of the generated class 

of functions, as well as by the type and location of zeros of polynomial ( )F t .  

Methods for simultaneous approximation of all roots of a given polynomial of 

degree n  can be found in [20, 21]. 

In some of cases when only a part of all zeros of polynomial are necessary to be 

known methods given in [22] can be used. 

Below we look at some comparisons (Fig. 4) between the Half-Logistic-Inverse-

Rayleigh (HLIR) cdf and the “Half-Logistic-Inverse-Rayleigh with Polynomial 

Variable Transfer” (HLIRPVT) cdf, as well as the ability to approximate specific 

dynamics data. 
 

   
Fig. 4. Comparison between the model (1) (dashed) and the new model (3) (red) at fixed = 0.001,  

= 0.95,  = 3,n  1 = 1.3,a   2 = 0.03,a  3 = 0.00001.a   For the model (3) 0 = 0.0125191,t  Hausdorff 

distance 2 = 0.0439798d  

 

We conclude that the proposed model 1 1( ; , , )nM t a a  has some free 

parameters leading to greater flexibility in modeling various data types. 
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3. Some applications 

Example 1. The model explored here can be successfully used for approximating 

propagation data of computer viruses [10-18, 25]. 

As an example we will approximate Stuxnet spreading. Stuxnet is world’s first 

cyberweapon. On 20 July 2010 Symantec initiate to monitor traffic to the Stuxnet 

Command and Control (C&C) servers [9]. The worm infected over 200,000 

computers. 

For the cumulative data from Fig. 5 the fitted model  

1 1 1 1( ; , , ) = ( ; , , )n nM t a a AM t a a  for = 0.41,  = 0.00157998,  = 5,n  

= 209000,A 1 = 0.00589269,a   2 = 0.00630298,a  3 = 0.00371303,a   

4 = 0.000861294,a  5 = 0.0000764171a    

is presented on Fig. 6. 
 

  
Fig. 5. Stuxnet propagation from 20 July 2010 to 21 September 2010 [9] 

   

   
Fig. 6. The fitted model 1 1 1 1( ; , , ) = ( ; , , )n nM t a a AM t a a   

for the cumulative data from Fig. 5 
  

Example 2. Approximation of the data “Data Zika Virus Infection” [44, 45]. 

The number of these M&CD diagnoses to be confirmed with a Zika virus 

infection also grows (green dots; left-hand axis) by 1 new detection (green bars; right-

hand axis) to 208 this EW. 

Those confirmed Zika virus infections represent 15% of all confirmed M&CD 

diagnoses and 3% of all suspect diagnoses. 
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For the cumulative data (Fig. 7) the fitted model 

1 1 1 1( ; , , ) = ( ; , , )n nM t a a AM t a a   

for = 3, = 0.91, = 8318.88, = 220,n A   

1 2 3= 3134.48, = 416.973, = 25.9594a a a  

is depicted in Fig. 8. 

 

  
 

Fig. 7. Laboratory confirmed ZIKV in microcephaly diagnoses [44, 45] 
 

   
Fig. 8. The fitted model 1 1 1 1( ; , , ) = ( ; , , )n nM t a a AM t a a   

for the data “Data Zika Virus Infection” [44, 45] 
 

From the attached graph, it can be seen that at the degree of the polynomial 

= 3n , some specific distortions typical of the model analyzed are very well 

approximated. 
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Example 3. Approximation of the data ”Influenza A(H1N1) (also known as 

Swine influenza)” [46]. 

In April 2009 scientific laboratories discover an influenza virus known as 

H1N1. This virus seems like a combination of viruses from birds, humans and pigs. 

Later, in 2010 The World Health Organization (WHO) reported the infection caused 

by H1N1 as a global pandemic. In August 2010 the WHO reported the finishing of 

pandemic. Since that scientists changed the name of infection and H1N1 virus is now 

H1N1v. 

 

  
Fig. 9. Influenza A(H1N1) cases [46] 

 

For the cumulative data from Fig. 9 the fitted model  

1 1 1 1( ; , , ) = ( ; , , )n nM t a a AM t a a  for =1.5,  = 21021.1,  = 6,n  =13398,A  

1 = 2777.7,a  2 = 69.8471,a   3 = 26.6675,a   4 = 3.21043,a  5 = 0.131274a    

is presented on Fig. 10. 

A detailed discussion of the topic the reader can find in the monographic study 

[5]. For other results, see [23-41, 42, 43]. 
 

 
Fig. 10. The fitted model 1 1 1 1( ; , , ) = ( ; , , )n nM t a a AM t a a  for the data “Influenza A(H1N1)”  

(also known as “Swine influenza”) [46] 
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Example 4. Approximation of the data “Data South Korea: Total Cases 

COVID-19” from 15.02.2020 to 26.04.2020 [8]. 

For the cumulative data from Fig. 11 the fitted model 
1 1( ; , , )nM t a a

 for  

1

2 3 4 5

=1.7109099, =1039.51, = 5, =10728, =17.2212,

= 6.32739, = 0.267302, = 0.00374985, = 0.0000123795

n A a

a a a a

 

 
 

is presented on Fig. 12. 
 

   
Fig. 11. “Data South Korea: Total Cases COVID-19” from 15 February 2020 to 26 April 2020 [8] 

   

  
Fig. 12. The fitted model 1 1 1 1( ; , , ) = ( ; , , )n nM t a a AM t a a   

for the “Data South Korea: Total Cases COVID-19” from 15 February 2020 to 26 April 2020 [8] 
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