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Abstract: In [4, 5], two classes of growth models with “exponentially variable 

transfer” and “correcting amendments of Bateman-Gompertz-Makeham-type” 

based on a specific extended reaction network have been studied [1]. In this article 

we will look at the new scheme with “polynomial variable transfer”. The 

consideration of such a dynamic model in the present article is dictated by our 

passionate desire to offer an adequate model with which to well approximate specific 

data in the field of computer viruses propagation, characterized by rapid growth in 

the initial time interval. Some numerical examples, using CAS Mathematica 

illustrating our results are given.  
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1. Introduction and preliminaries 

In [1] the following class of growth-decay model formulated in terms that include 

various types of evolution of the resource species: 
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is considered. 

The general model can be written for the growth function in the form [1]:  
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where for ki ≠ kj,  i, j = 1, 2, …, 2n,  
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We will explicitly note that for n  2  the model (1)-(3) summarizes Markov’s 

research [2, 3]. 

A number of basic results in this direction can be found in [6-11]. 

It is of interest to observe the new growth model based on this reaction networks 

in the case where, for example, k1= k1(t),  k3= k3(t), …, k2n–1= k2n–1(t).  

In this article we will get a generalized class of growth curves with polynomial 

variable transfer based on this reaction scheme. 

2. Main results 

Let us consider the following reaction network:  
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and , = 2, 4, , 2rk r n , and k  are constants. 

In the general case, the detailed study of the scheme (4) and the corresponding 

“reaction system of differential equations”, as well as the important question of the 

stability of the component of the solution ( )x t  is an extremely difficult task. 

For this reason, we will study the dynamics of this model in the following 

particular case. 

2.1. The case 1( ) = 1 ,k t t  and 2 = 1k  

Consequently the following differential equations can be formulated  
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with 0 0 0(0) = ; (0) = ; (0) = .s s p p x x  

For the solution of the first equation in (5) we obtain  
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From the second equation of the system (5) we have  
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From 0(0) =p p  we get 0=R p . 

So, finally, for the solution ( )p t  we get  
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More importantly, the solution ( )x t  of the last equation of the differential 

system 
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generates a new growth model not encountered to have been described in the 

literature. 

We illustrate our new model for fixed 0 0,s p  and various parameters k  and 0x  

(Fig. 1). 

Remark. It is important to study the characteristic – “super saturation” of the 

model to the horizontal asymptote. 

In this connection, the following Proposition is valid. 
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Proposition. For the new model (8) it is fulfilled that 
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Fig. 1. The functions ( )x t  (red), ( )p t  (blue), ( )s t  (green) for fixed 
0 = 1,s  

0 = 0 :p  

a) 
0= 11.54, = 0.00001;k x  b) 

0= 6.93, = 0.001;k x  c) 
0= 4.605, = 0.01k x    

2.2. Some applications 

The consideration of such a dynamic model in the present article is dictated by our 

passionate desire to offer an adequate model with which to well approximate some 

specific data (including datasets from computer viruses propagation), characterized 

by rapid growth in the initial time interval. 
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Example 1. We consider the following specific data [12]:  

data_CDF_1:= {{1, 0.6762},{2, 0.8286},{3, 0.8667},{4, 0.9143},

{5, 0.9333},{6, 0.9429},{7, 0.9524},{8, 0.9571},{9, 0.9667},

{10, 0.9714},{11, 0.9733},{14, 0.9810},{20, 0.9829},{23, 0.9857},

{25, 0.9885},{55, 0.9905}}.

 

The model (8) for 0 = 0p , 0 = 1s , 0 = 0.5x , = 0.660972k  is visualized on 

Fig. 2. 
 

   
Fig. 2. The fitted model (8) for approximation of the data: “data _CDF_1” [12] 

 

Example 2. Storm worm was one of the most biggest cyber threats of 2008 [13]. 

We consider the following data:  

data_Storm_IDs

:= {{1, 0.843},{4, 0.926},{5, 0.954},{6, 0.967},{7, 0.976},

{8, 0.981},{9, 0.985},{10, 0.991},{22, 0.995},{38, 0.997},{51, 0.998},

{64, 0.9985},{74, 0.999},{83,1},{100,1}}.

 

The model (8) for 0 = 0p , 0 = 1s , 0 = 0.5x , = 0.683003k  is visualized on  

Fig. 3. 

  
Fig. 3. The fitted model (8) for approximation of the data “data-Storm” 
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Example 3. For the data (collected from the 140 telecommunication systems 

that manage the radio access part of wireless systems by week (see, for example [14])) 

the model (8) for  

0 0 0= 3.44078, = 1, = 0.65, = 0.17k s p x  

is depicted on Fig. 4. 

 

   
Fig. 4. The model (8) (Example 3) 

 

Example 4. The mean value functions of nine models for the “Failure data” 

from the Debugging Theory are considered by L e e, C h a n g  and P h a m  [14],  

(Fig. 5) 

 

  
  

Fig. 5. The mean value functions of nine models (including GO (Goel-Okumoto), NEW (Le-Chang-

Pham), DS (Delayed S-shaped), PZ (Pham-Zhang) and other models for this data [14]) 
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For the data from [14] the model (8) for =14.3787,k  0 = 0.521269,s   

0 = 1.1,p  0 = 0.0441936,x  is depicted on Fig. 6. (We have adopted a scale on the 

horizontal axis: 0.1 division corresponds to one time interval). 

 

   
Fig. 6. The model (8) for the “Failure data” 

 

The experiments show that in some cases the use of the growth model proposed 

in this article is satisfactory. 

Specialists working in this scientific field have a say. 

For other results, see [15-19]. 
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