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Abstract: Finding optimal measurement schemes in quantum state tomography is a 

fundamental problem in quantum computation. It is known that for non-degenerate 

operators the optimal measurement scheme is based on mutually unbiassed bases. 

This paper is a follow up from our previous work, where we use standard numerical 

approaches to look for optimal measurement schemes, where the measurement 

operators are projections on individual pure quantum states. In this paper we 

demonstrate the usefulness of several machine learning techniques – reinforcement 

learning and parallel machine learning approaches, to discover measurement 

schemes, which are significantly better than the ones discovered by standard 

numerical methods in our previous work. The high-performing quorums of projection 

operators we have discovered have complex structure and symmetries, which may 

imply that the optimal solution will possess such symmetries. 

Keywords: Quantum information, optimization problem, Widening, reinforcement 

learning. 

1. Introduction 

1.1. Quantum state tomography in d dimensions with projective measurements 

While pure quantum states are represented by normalized vectors in a Hilbert space 

of complex dimension d, interaction with an environment can lead to mixed states 

represented by a Hermitian trace-1 d×d-matrix , thus,  is given by d2–1 real 

parameters. Quantum State Tomography (QST) is the procedure to determine these 

parameters. Projective quantum measurements, represented by Hermitian d×d-matrix 

have up to d different outcomes, the eigenvalues of such a matrix. We write the 
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measurement operator as ∑j λjPj where λj are the eigenvalues and Pj are projection 

operators. The probability to measure λj, is given by the trace of the matrix product 

of  and Pj, Tr(Pj). Repetitions of a measurement are needed in order to obtain an 

estimate for these probabilities by the frequencies of the measurement outcomes. As 

one projective measurement provides no more than d–1 parameters, different 

measurements are needed. We focus on the question what is an ideal choice of 

measurements under certain restriction in the sense that we want to find the minimal 

set of measurement operators (quorum) that allows for estimating  with a desired 

precision with as little measurements as possible. 

The importance of QST lies in the possibility to demonstrate full control over 

the system and to verify the functionality of a quantum device, and to debug it. 

Consequently, QST has been performed for many quantum mechanical systems 

intended as building blocks of a quantum computer [1-4]. 

1.2. SIC-POVMs as an alternative approach 

A generalized quantum measurement is expressed by a Positive Operator-Valued 

Measure (POVM). This is a set of positive semi-definite matrices Fj that fulfill 

∑jFj=Id where Id is the d×d unity matrix. Using an ancilla quantum system, the 

measurement can have more than d different outcomes, each of them has the 

probability Tr(Fj). For QST with one repeated generalized measurement, the 

corresponding POVM needs to be informationally complete. Then it has to have at 

least d2 elements.  

Symmetric, Informationally Complete POVMs (SIC-POVMs) are of great 

importance for QST due to their beneficial properties and the fact that they seem to 

be available for all d [5, 6, 7]. SIC-POVMs are formed by d2 quantum states |ψj⟩, 
which fulfill |⟨ψj|ψk⟩|2=1/(d+1) ∀ j ≠ k, and then the elements of the POVM are 

proportional to the projectors on these states, Fj = |ψj⟩⟨ψj|/d. 

2. Optimized quantum state tomography as optimization problem 

2.1. Geometric quality measure 

As the trace of ρ is known, we work in the (d2–1)-dimensional vector space of 

traceless d×d-matrices with the inner product defined as ⟨A|B⟩=Tr(A†B) for d×d-

matrices A and B, where A† is the conjugate transposed of A and Tr(A†B) is the trace 

over the matrix product of A† and B. For the projectors involved in our QST quorum 

we define their traceless part as 

(1)    Qj = Pj – rank(Pj) Id / d. 

W o o t t e r s  and F i e l d s  [8] showed that the information gain by quantum 

measurements with a fixed number of repetitions becomes maximal if the volume 

spanned by the d2–1 linear independent Qj is maximal. We can express this volume 

as 

(2)    |det Q| = |det(Q1 |Q2 |…|Qd2 – 1)|, 

where Q is the (d2–1)×(d2–1)-matrix with the columns representing the Qj as 

coefficients for a basis of the (d2–1)-dimensional vector space. 
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2.2. Non-degenerate measurements 

W o o t t e r s  and F i e l d s  [8] considered the non-degenerate case, where each 

measurement has d different eigenvalues. Consequently, to determine , d+1 

different measurements need to be performed. Wootters and Fields found that ideally 

the different measurements are informationally independent or mutually unbiased, 

meaning that results from one of the measurements do not provide any prediction for 

the outcome of the other measurements. Mathematically speaking this is the case if 

⟨Qj|Qm ⟩ = 0 for all j, m from different measurements. Note that one cannot change 

the value ⟨Qj|Qm ⟩ = –1/d for j, m being from the same basis, as the respective quantum 

states are orthogonal to each other. The eigenbases of the measurement operators are 

then called Mutually Unbiased Bases (MUBs). A complete set of d + 1 MUBs exists 

if d is a prime power [8], e.g., for K qubits, d = 2K. 

2.3. Projection on half-dimensional subspaces 

If in a composite quantum system only one qubit can be measured, this is represented 

by independent rank – d/2 projectors. For d being of prime-power dimension d2–1 of 

those half-dimensional projectors can be arranged in an optimal fashion [9], i.e., 
⟨Qj|Qm⟩ = 0 ∀ j ≠ m. 

2.4. Rank-1 projectors in d-dimensional Hilbert space 

We now consider measurements that distinguish between one quantum state and the 

remaining (d – 1)-dimensional subspace, describe by rank-1 projectors. For two spin 

qubits in semiconductor quantum dots, rank-1 projectors can be realized by spin-to-

charge readout [10, 11]. While we deal with d2–1 rank-1 projectors as W o o t t e r s  

and F i e l d s  [8] did, they are now completely independent. Each has to be realized 

by a different measurement. One can choose to rebuild the projectors on states from 

sets of MUBs [10]. However, by numerical optimization, we showed [11] that this is 

not the optimal choice. 

Furthermore, one can proof that the Qj cannot be arranged all orthogonal to each 

other in this situation if d > 2. A proof is given in [10] for d = 4 and can be generalized 

for other dimensions. As an alternative one can drop the condition of forming a 

minimal set and instead project one-by-one on the states forming a SIC-POVM. For 

d = 4, we have shown by simulating QST that this outperforms the numerically 

optimized minimal QST schemes [11]. 

3. Three-qubit system, d = 8 

We focus on the case of three qubits, d = 8 because the optimization problem becomes 

more challenging with increasing dimension. For two qubits, Powell’s method 

applied in [11], seemed to find the optimal value of the quality measure |det Q| in a 

reliable way, for three qubits this was not the case. 

We need to find a quorum of 63 projectors Pj on quantum states |ψj⟩, i.e., in bra-

ket notation Pj=|ψj ⟩⟨ψj|. Each quantum state, i.e., normalized vectors of arbitrary 
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global phase, in an 8-dimensional complex Hilbert space is parametrized via  

|ψj⟩ = xj
k |k⟩, with {|k⟩, k = 0, …,7} being a basis of the Hilbert space, by 

(3)    xj
k = exp(i φk

j)cos θk
j 

1

0
sinθ

k j
ll



   

with φ0
j = 0 and θ7

j = 0. So that for each state j, we need to know the 14 parameters 

{θ0
j, …, θ6

j, φ1
j, …, φ7

j}. The quality measure |det Q| is invariant under unitary 

operations applied to all quantum states. Thus, we can choose some of the parameters 

without loss of generality. Namely, we can choose for the first eight states: φk
j = 0 ∀ 

k ≥ j and θk
j = 0 ∀ k ≥ j. The number of remaining free parameters is 819. From the 

volume of a hypercube we obtain the non-reachable upper bound, (7/8)63/2 = 0.01490. 

As a starting point we choose, for simplicity, random values for φk
j ∈ [0, 2π) and  

θk
j ∈ [0, π/2). For comparison, the best result found in [11] was |det Q| = 0.001803. 

4. General Widening 

Most research in parallel data mining focuses on the processing of larger data sets or 

the speed-up of existing algorithms. 

Yet for many tasks, it is the quality of result obtained by the algorithm, which 

is of the greatest importance. Often data mining algorithms employ a greedy heuristic, 

which relies on the local optimality property in order to make the search through an 

enormous space of potential solutions feasible. 

Due to this limited exploration, finding the optimal solution is not guaranteed. 

In [12], a strategy for using parallel resources to improve the results obtained by a 

greedy heuristic, while at the same time keeping the running time constant, is 

proposed. This strategy is referred to by the authors as Widening. The goal of 

Widening is to invest the available parallel resources in multiple simultaneous 

searches through the solution space and, by that, it achieves an improvement of the 

solution quality. In order to invest the parallel resources intelligently, it is critical to 

avoid the exploration of very similar solutions in parallel and converging to a local 

optimum. Diversity needs to be used in order to force the widened search to 

investigate the solution space more broadly. In [13] a more in-depth discussion of the 

importance of diversity in Widening is presented, introducing the concept of 

diversity-driven Widening. In [14, 15] neighborhood-based Widening approaches 

were developed. A greedy data mining heuristic can be presented as a search through 

the space of models from M. At each step the greedy algorithm chooses a locally 

optimal solution, until a sufficiently good solution is found, based on predefined 

stopping criteria. 

The search can thus be formalized as an iterative application of two operators: 

refinement r and selection s. The refinement operator generates a set of more specific, 

potentially better, models (or new refinements): r(m) = Mr. The selection operator s 

uses a model evaluation function ψ to choose the locally best model from the set of 

all possible refinements Mr.  One iterative step of the greedy search can be presented 

as: m′ = sbest(r(m)) where sbest(r(m)) = argmaxm′′∈r(m) {ψ(m′′)}. Fig. 1-(1) shows this 

representation of a Greedy Algorithm. 
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(1)                                                               (2) 

         

Fig. 1. Greedy Algorithm on the left (1): the current model m is depicted in green, the refinement 

options r(m) are shown gray (a); the selection operator s picks the yellow refinement (b); the search 

continues from the chosen model (c). On the right (2) Widening is shown: From the set of current 

models (green), the refinement operator creates refinements (gray); a subset of the refined models 
(yellow circles in (b)) are selected and the search continues (c) 

 

Using the abstract selection and refinement operators, a Widening of a greedy 

heuristic can be defined as a modification of the selection operator s, 

(4)   M′ = {m′1, …, m′k} = sW(⋃m∈M r(m)). 

At each step, the selection operator sW considers the refinements of a set M with 

of size k and returns a new set M′ of k refined models. Fig. 1 (2) illustrates this 

process. In order to prevent convergence to local optimum we introduce diversity in 

the selection criteria by modifying the selection operator so that at each step it builds 

a set of best models that satisfy a diversity threshold δ to the already chosen models. 

5. Powell’s method 

Powell’s conjugate direction method [16] is a derivative-free algorithm for finding a 

local minimum of a real function. The method minimizes the function by a bi-

directional search along each search vector, in turn. The bi-directional line search 

along each search vector can be done by Brent’s method. The method is useful for 

calculating the local minimum of a continuous but complex function, especially one 

without an underlying mathematical definition, because it is not necessary to take 

derivatives. This is especially useful for our optimization problem. Furthermore, it is 

known that the Powell’s method performs very well for exploitation, i.e., in situations 

where the starting point is not exceedingly far from the optimum. In [11], when 

comparing different standard numerical methods for optimization, Powell was the 

one, which performed the best without the necessity of additional parameter tuning. 

Due to its excellent exploitation properties, Powell’s method has traditionally been 

combined with other algorithms, which perform very well for exploration, but not for 

exploitation. Our goal here is the same. We will take advantage of Powell’s method 

strong abilities for local search, but try to generate excellent diverse starting points, 

which will help with the use of many Powell’s searches explore the search space. 
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6. Parallelizing of the Powell’s method 

In order to improve the exploration of the search space we want to perform multiple 

Powell’s searches in parallel. Due to the fact that Powell’s method is very good in 

exploitation, the most important task and our focus is to find good starting points. We 

generate n starting points, which satisfy a chosen distance measure. We always 

maintain n number of parallel searches. If the distance between two solutions is 

smaller than the diversity threshold, the weaker solution is discarded. For each 

diverse solution discovered like this we look into their neighborhoods using the 

formula 

(5)   x′mi = xmi + φmi (xmi – xki), 

where xk, xm are already discovered solutions, and φmi ∈ [–1, 1]; x′m substitutes xm in 

the set of starting points if it leads to a quorum of better quality. For each of the n 

points we generate n solutions at each step and pick the best n, which satisfy the 

diversity threshold. When the mean quality of the solutions stops improving, we use 

the discovered solutions as starting points of the Powell’s method and we run n 

Powell’s method searches in parallel, starting with high quality diverse starting 

points. 

6.1. Diversity measures 

We consider two different diversity measures, which capture different properties, 

meaningful for our problem. The first diversity measure tries to evaluate the 

Euclidean distance between the vectors of two quorums. The second diversity 

measure takes into consideration the invariance of the angles between the projectors 

in a quorum. The quality of a quorum is uniquely given by the pairwise angles. 

Namely if two different solutions have the same angles (or similar angles) we will 

consider them equivalent. Given two quorums Q(1) ={Q′1, Q′2, …, Q′63}  and  

Q(2) = {Q′′1, Q′′2, …, Q′′63}, we calculate the angles that each projector vector  

Q′i ∈ Q(1) , i = 1, …, 63, forms with Q′j ∈ Q(1), i = 1, …, i–1, i+1, …, 63, and all the 

angles which Q′′i ∈ Q(2) , i = 1, …, 63, forms with Q′′j ∈ Q(2), i = 1, …, i–1,  

i+1, …, 63. We then calculate for each vector from Q(1) the similarity between the 

angles which each vector from Q(2) forms with the other projectors of Q(2). We 

calculate the mean common angles for each projector and divide it by 63 to normalize. 

This we use as a distance measure.  

Calculating the Euclidean distance directly is infeasible, due to the size of the 

quorum (63) and the inability to know which projector from Q(1) to match to which 

projector to Q(2). Note that two quorums are identical if they contain the same 

elements in different order. That is why we use a modified Euclidean distance. This 

we calculate by ordering all projectors in a quorum based on their similarity to the 

fixed projector Q1
(k), which is present in each quorum. The fixed projector is the same 

in each quorum. We then calculate the Euclidean distance using the sorted quorums, 

by calculating the Euclidean distance of Q′i ∈ Q(1) to Q′′i  ∈ Q(2). 
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7. Reinforcement learning 

Reinforcement learning is an area of machine learning, where an agent learns a 

behavior in a given environment, which maximizes the notion of cumulative reward. 

Reinforcement learning is one of three basic machine-learning paradigms, alongside 

supervised learning and unsupervised learning and is heavily used to solve complex 

optimization problems. It looks for optimal exploration and exploitation to solve a 

problem. Given an agent A and an environment E and an environment state s, the 

agent is performing an action α, to which the environment responds with a reward r. 

The agent learns the policy (a map between states and actions), which maximizes the 

reward. 

We use Deep Deterministic Policy Gradient Algorithm (DDPG Algorithm) [17], 

which is especially suitable for continuous state spaces and continuous action spaces, 

which is our situation. It is an actor-critic method, consisting of four neural networks: 

one for learning the policy, one for learning the value function and two as fixed target 

neural networks.  

8. Experimental settings 

8.1. Parallelized Powell’s Algorithm 

We start n different Powell’s searches, where n = 1, 50, 100, 300 with well-chosen 

starting points. The n starting points for each run are selected based on their quality 

and enforcing diversity by using two diversity measures, one based on Euclidean 

distance and the other based on angles as described in the Methodology section. Each 

widened Powell’s search is run 20 times. The number of iterations, when generating 

the starting points for which improvement is not seen, k, is set to 5. The number of 

iterations of the Powell’s method is the default one. The Powell’s method from 

scipy.optimize package is used, in the minimize function, with its default standard 

settings. The diversity measure threshold for modified Euclidean distance is set to 

0.1. The diversity measure threshold for diversity based on angle similarity is set  

to 0.1. 

8.2. Reinforcement learning 

To implement the DDPG Algorithm we use the package stable-baselines [18], 

OpenAI Gym [19].  

The observation space was defined as a continuous 819-dimensional box with 

the first 413 dimensions being bounded by intervals [0, /2] and dimensions from 

414 to 819 are bounded by intervals [0, 2]. The action space is the same as the 

observation space. Each step consists of performing only five iterations of the 

Powell’s search method and assigning a reward. The reward is a weighted difference 

between the geometric quality measure |det Q| and the penalty, which is based on the 

number of steps (#st). The penalty was introduced to enforce a faster convergence. 

Namely, the reward = |det Q| – #st/1000. The actor, critic and the target networks are 

implemented as fully connected, simple MultiLayered Perceptron (MLP) networks 
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with two hidden layers each with 64 neurons. The input layer is of the dimension of 

the observation space (819) and the output layer has the same size (819) and is fully 

connected. Ornstein-Uhlenbeck noise is added to the actions to facilitate the training. 

350 training steps were performed. The learning rate chosen was 0.0001 for actor and 

0.001 for critic with soft update of target set 10–3, the size of the replay buffer was 

107, gamma discount was 0.99, weight decay set to 10–5 batch size 128.  

9. Results 

Fig. 2 shows the results from Widening of the Powell’s method with diversity 

measure based on the modified Euclidean distance, as described in the Section 6. The 

box plot for n = 1 actually presents the regular Powell’s method and we contrast it to 

the parallel Powell’s results. Fig. 3 shows the results from Widening of the Powell’s 

using distance measure based on angle similarity, as described in the Section 6. 

Again, the boxplot for n = 1 represents the plot of the linear Powell’s method and it 

is contrasted with the results obtained by the parallel methods. As expected, the 

greater the number of parallel searches, the better the obtained result, due to the better 

exploration of the search space. Fig. 3 shows the results from the reinforcement 

learning of the already trained algorithm. 

Both diversity measures reach a similar level of model quality, even though they 

both have different reasonings behind them. The quorum with the highest 

performance, discovered has |det Q| = 0.00253. With reinforcement learning one can 

see that the results obtained are all of very high quality and very close together in 

terms of performance (see Fig. 3, the box of the box plot is very flat). This means that 

the reinforcement method learns how to obtain good solutions after appropriate 

training and at each step gets another high performing solution. The parallel Powell′s 

method (Widening) simply explores many different paths in parallel in order to find 

the best possible solution.  

9.1. Structure of the solutions 

First, from our analysis, it is obvious that for all good solutions, the Qj have pairwise 

angles close to 90°. The maximal quorum, which would be a quorum of equiangular 

vectors, where all angles are 90° cannot be achieved in principal. However, all angles 

are very close to 90° compared to the angles between vectors of badly performing 

quorums. Table 1 shows maximum, minimum, and mean of all angles formed by top 

quality solutions contrasted with the angles formed by vectors from a bad quality 

solution. 

It can be seen that the size of the angles between vectors of well performing 

solutions (quorum with a large |det Q|) are consistently good, and the size of the 

angles between vectors of badly performing solutions  consistently small. 

Secondly, we want to investigate the best performing quorums for existing 

symmetries. In [11], we discovered for d = 3, 4 that the optimal solutions had many 

repeating angles. In fact, each of the discovered angles was repeated many times 

within a given solution.  
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Here we are interested in whether within one solution there are common angle 

patterns between vectors and what is the difference in this respect between well 

performing and badly performing solutions. Given a vectors Qi and Qj, j ≠ i, from 

quorum Q we are interested in the intersection of the two sets of angles Si, Sj, which 

Qi  and Qj make with the respective other vectors from quorum Q. In Table 2, we can 

see Si ∩ Sj for top solutions as well as for badly performing solutions. The table shows 

the mean, the minimum, and the maximum of Si ∩ Sj taken over all possible 

combinations of j ≠ i. It is clear that the good solutions have more angle patterns 

repeated within one quorum, which implies complex types of symmetrical 

substructures within the top solutions.  
Additionally, we are interested in the common angles formed by the  

projectors of two quorums. Namely, given two quorums Q(1) = {Q′1, …, Q′63} and 

Q(2) = {Q′′1, …, Q′′63} we are interested in the intersections of all possible S′i, S′′j, 

where S′i is the set of angles formed by Q′i ∈ Q(1) with all other projectors from Q(1) 

and S′′j is the set of all angles formed by Q′′i ∈ Q(2)  with the other elements of Q(2). 

Table 3 shows the mean minimum and maximum of such pairwise intersections 

between two high-quality quorums and two low-quality quorums. Clearly, from the 

results we can see that highly performing solutions have similarity in angles between 

quorum projectors, and badly performing solutions do not have similarities between 

the angles formed by their projectors. 

Lastly, we want to investigate the distance between very highly performing 

solutions. This will give us information about the landscape of the solution space. 

Here, for the analysis of the results, we apply a different sorting procedure than 

previously for the diversity criterion in the Widening. We start with the first element 

of the first quorum and match it to the element from the second quorum that has the 

shortest distance to it, for the second element from the first quorum we then search 

for the closest one among the remaining 62 elements of the second quorum and so 

on. This still means that we might not find the sorting that provides the shortest 

distance overall, but it should provide a good idea how far apart two quorums are. 

The distances given in Table 1 are the sum over the distances of the matched elements 

of the first and the second quorum divided by 63. Again, we compare the distance 

between two randomly selected quorums and the distance between highly performing 

solutions. The distance between the highly performing solutions is greater than that 

of the randomly selected ones, which hints at the existence of multiple peaks in the 

search space.  

Table 1. Euclidean distance 

Characteristics for comparison between two sets High-ranking set Random set 

Mean set quality 0.002474 2.5357×10–63 

Mean set distance 1.0008 0.77012 

 

This implies that the search space of potential solutions has a complex landscape 

with more than one peak. Clearly, however, if one takes the invariance with regard 

to angles between projectors of a given quorum, the similarity between highly 

performing quorums is significantly greater than the similarity between randomly 

chosen quorums, which perform badly. This shows that very particular structure of 
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the solutions must be in place in order for them to perform well, regardless of their 

position in the Euclidean space.  

Table 2 shows investigation of common angle patterns within one quorum. 

These results are focused on looking for structures that exist in quorums, which have 

high quality with respect to our quality measure and do not exist in solutions, which 

do not perform well in terms of our quality measure. It shows mean values of the 

maximal number of common angles that each projector forms with other projectors, 

the minimal number of common angles shared between projectors, and the mean 

number of common vectors. The results are investigated for two sets of quorums, one 

which consists of high-performing solutions, and another which consists of badly-

performing solutions. The average quality of the two sets of quorums is also shown 

in the table.  

Table 2. Intersections within a quorum 

Characteristics for comparison  

between two sets 

High-ranking set of 

quorums 

Random set of 

quorums 

Mean set quality 0.002474 2.5357×10–63 

Mean of maximal number of common angles per 

projector within a quorum 
23.667 7.333 

Mean of minimal number of common angles per 

projector within a quorum 
9.952 0.0 

Mean of the number of common angles per projector 

within a quorum 
18.742 4.586 

 

Table 3. Common angles which occur in two quorums 

Characteristics for comparison between two sets 
High-ranking set 

of quorums 

Random set of 

quorums 

Mean set quality 0.002474 2.5357×10–63 

Mean of maximal number of common angles per projector 

between two quorums 
24.667 8.0 

Mean of minimal number of angles forms with vectors 

from quorum 1 that can be found also in quorum 2 (per 

projector) 

8.645 0.0 

Mean of the number of common angles per projector 

between two quorums 
19.323 4.726 

 

We can see that for solutions, which perform well the similarity of angles is very 

high compared to the solutions which do not perform well. Additionally, the common 

angle patterns for a projector within its quorum are almost the same number as the 

common angle patterns between a projector and another quorum. This discloses 

similarity in the structure and in the symmetry patterns.  

       Table 4. Size of angles 

Characteristics for comparison  

between two sets 
High-ranking set of quorums Random set of quorums 

Mean set quality 0.002474 2.5357×10–63 

Mean of maximal dot product 0.01480 0.7645 

Mean of minimal dot product 5.291×10–8 4.984×10–5 

Mean of dot product 0.0009049 0.4869 
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It can be concluded that the angles of random solutions are further from 90° than 

the angles of top-performing solutions (Figs 2-4). 

 

 
Fig. 2. Quorum optimality with Widening with modified Euclidean distance 

 

 
Fig. 3. Quorum optimality with reinforcement learning 

 
Fig. 4. Quorum optimality with Widening with distance measure based on angle similarity 

10. Conclusion 

By applying machine learning methods, we were able to find an improved quorum of 

rank-1 projectors that allows for an efficient quantum state tomography measurement 

scheme for three qubits compared to previously obtained results by a standard 

numerical method [14]. The comparison of the obtained solution suggests that the 

optimal solution is not unique and has some inner symmetries. However, a deeper 

analysis is needed to completely clarify the mathematical structure, the relation 

between two distant but equally top-performing solutions, and potentially be able to 
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construct those solutions for arbitrary dimensions. We expect that the optimal 

solutions in von-Neumann measurement systems will also possess symmetry, even 

though not all elements are equiangular to each other unlike the SIC-POVMs for 

generalized measurements. As the dimensions of the Hilbert space and the parameters 

increase that may not be the case. Already at 12 dimensions the parameters are over 

3000 and Powell’s method cannot run in feasible time. Approaches that are more 

sophisticated will be needed, including analytical and constructive ones, which 

generalize theoretically the properties of the ideal solutions, discovered by machine 

learning. Our approach is not limited to rank-1 projections or to any dimension of the 

Hilbert space. It can be applied to many scenarios where the optimal scheme for 

quantum state tomography is desired. However, at the rank-1 projection operators it 

is proven theoretically that the upper bound – the optimal equiangular solution – 

cannot be reached. The question is how close to this bound can we get in the case of 

rank-1 projection operators. We intend to proceed with looking for optimal projection 

operators of rank-1 in higher dimensions and to generalize our findings.  
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