
 5

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 20, No 6

Special Issue on New Developments in Scalable Computing

Sofia 2020 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2020-0056

Scalable Methods and Algorithms

Performance Optimization System for Hadoop and Spark

Frameworks

Hrachya Astsatryan1, Aram Kocharyan2, Daniel Hagimont2, Arthur

Lalayan3

1Institute for Informatics and Automation Problems of the National Academy of Sciences of the Republic

of Armenia, Yerevan 0014, Armenia
2Université Fédérale Toulouse Midi-Pyrénées, Toulouse Cedex 7, France
3National Polytechnic University of Armenia, Yerevan 0009, Armenia
E-mails: hrach@sci.am ar.kocharyan@gmail.com arthurlalayan97@gmail.com

Abstract: The optimization of large-scale data sets depends on the technologies and

methods used. The MapReduce model, implemented on Apache Hadoop or Spark,

allows splitting large data sets into a set of blocks distributed on several machines.

Data compression reduces data size and transfer time between disks and memory but

requires additional processing. Therefore, finding an optimal tradeoff is a challenge,

as a high compression factor may underload Input/Output but overload the

processor. The paper aims to present a system enabling the selection of the

compression tools and tuning the compression factor to reach the best performance

in Apache Hadoop and Spark infrastructures based on simulation analyzes.

Keywords: Hadoop, Spark, data compression, CPU/IO tradeoff, performance

optimization.

1. Introduction

Big Data processing [1] is a resource-intensive operation that uses specific hardware

and software. Due to the intense Input/Output (I/O) nature of the processing, the

hardware architecture is different from the traditional High-Performance Computing

(HPC) clusters or supercomputers, particularly, local disks are required for all data

nodes. Moreover, the data processing application stack is also significantly different

from traditional approaches. For instance, the data volume is substantially larger than

in other operations, and the data sets are poorly structured, and various data types are

available.

 6

The traditional relational database management systems, like SQL queries, are

incapable of tackling semi-structured or unstructured Big Data processing. Thus, the

MapReduce model has been introduced, a critical technology for processing and

generating extensive data sets. Its implementations, such as Apache Hadoop [2] or

Spark [3], split large data sets into a set of distributed blocks, execute map tasks in

parallel on these blocks, and finally reduce tasks for the aggregation of results. Data

compression techniques are used to overcome data storage and network bandwidth

limitations to process a massive volume of data. In Big Data infrastructures, it

decreases the size of data chunks to minimize the time delay forced by the I/O

operation and save space on local disks. Therefore, it is a challenge to find an optimal

tradeoff, as high compression factor may underload I/O but overload CPU, while a

weak compression factor may underload CPU but overload I/O. The ideal

configuration is when both I/O and CPU are used entirely. CPU (respectively I/O)

should not be waiting for I/O (respectively CPU) to reach the best performance.

The paper aims to present a system enabling the selection of the compression

tools and tuning the compression factor to reach the best performance in Hadoop and

Spark infrastructures based on simulation analysis. Section 2 presents background

information and the motivation about the technological stack used to implement and

evaluate the compression techniques. Section 3 reviews related work. Section 4

presents the methodology of experiments, including the evaluated compression

algorithms. Section 5 illustrates the experimental results and evaluations, and Section

6 concludes the paper.

2. Background and motivation

The resource optimization addresses the growing needs of Big Data processing and

analysis. The traditional methods and tools are mainly dedicated to CPU resource

optimization, but the memory and I/O consume a significant portion of Big Data

processing resources. Many scientific studies have been dedicated to the memory

optimizations in hardware [4], kernel memory [5], and middleware [6] layers. The

paper aims to optimize the resources in the application level using several

compression algorithms within the Apache Hadoop and Spark frameworks, aiming

to reduce the size of the files to be processed (to be loaded into memory, and written

back to the disk). This approach increases the CPU load of the system overall, but as

already mentioned, the CPU is not the most consumed resource in such systems, and

it often stays underutilized. In the meantime, the splittable compressing algorithms

split and merge back the data while using the MapReduce development model. The

suggested system is based on Apache Hadoop and Apache Spark general-purpose Big

Data computing frameworks. If the Apache Hadoop is a model for reading and

writing data processing based on disk, the Apache Spark performs in-memory

calculations with the resilient distributed data sets. Apache Hadoop is an open-source

Java-based distributed computing framework built for applications implemented

using MapReduce parallel data processing paradigm [7] and Hadoop Distributed File

System (HDFS) [8].

 7

As a distributed file system, HDFS provides a reliable, scalable, and fault-

tolerant distributed data storage. The data is stored as blocks for handling the

hardware failures. The replication factor shows the number of copies of a block in

HDFS. MapReduce has become a critical distributed processing model for large-scale

data-intensive applications like data filtering, feature extraction, or web indexing.

The Map and Reduce functions are the key components of the MapReduce

programming model. The Map function processes a key/value pair for generating a

set of intermediate key/value pairs, while the Reduce function aims to merge all

intermediate values associated with the same intermediate key. When the Map tasks

are completed, the intermediate output is shuffled and sorted. The shuffle step is the

only communication step between data nodes in MapReduce, during which nodes

begin to swap the intermediate outputs from the map tasks. After shuffling and

sorting, the reduce phase calls the user-defined reduce task and stores the output on

HDFS.

The data compression algorithms are used in the suggested system to reduce the

data movement cost by increasing the computation time. MapReduce supports the

implementations of several compression and decompression algorithms called a

codec. Data compression methods are classified according to data quality, codec

schemas, data, and application types [9]. The codec allows us to compress and

decompress data using splittable and non-splittable compression algorithms. The

splittable compression algorithm splits the file into the compressed and

uncompressed data blocks with the fixed size of the HDFS file’s block size setting,

where each of them can be decompressed separately of the others. The Hadoop also

supports a non-splittable algorithm with a serial decompression, which usually

requires longer decompression time. Therefore, the tradeoff of data compression

algorithms depends on various factors, such as degree of compression, data quality

(with or without loss), compression algorithm type, or data type. The degree of data

size or I/O reduction depends on the compression ratio, which equals compressed

data divided into the uncompressed data size. The compression ratio relies on the data

and the compression algorithm. A lower ratio means less memory and I/O usages.

The data compression in Hadoop and Spark frameworks increases the storage

space and improves performance to compute the job. The compression can be

implemented for input data, intermediate Map output data, and Reduce output data

stages. Intermediate compression of the map output reduces network usage during

the Mapreduce shuffle step. All nodes begin to communicate with each other and

collect the map output as the phase reduces input. If the input or intermediate output

of the map phase is compressed, the framework chooses a decompression algorithm

before processing according to the file extension (Тable 1).

Table 1. A summary of compression formats available in Hadoop

No Compression format File extension Splittable

1 gzip .gz No

2 bzip2 .bz2 Yes

3 snappy .snappy Yes (container file formats)

4 Lzo .lzo Yes (indexing algorithm)

5 lz4 .4mc Yes (4MC library)

6 zstandart .4mz Yes (4MC library)

 8

The data is stored securely, as all selected compression codecs are lossless. The

gzip and deflate codecs use the deflate algorithm as a combination of lz77 and

Huffman Coding [10]. The lz77 compression algorithm replaces duplicate bit

positions regarding their previous positions. The difference between gzip and deflate

is the Huffman encoding phase. The splittable compression bzip2 codec uses the

Burrows-Wheeler (block-sorting) text compression and Huffman coding [11]

algorithms. Bzip2 compresses data blocks independently and can compress data

blocks in parallel. As a fast data compression and decompression library, snappy uses

the ideas from lz77 [12]. Snappy blocks are non-splittable, but the files in the snappy

blocks are splittable. The lzo (Lempel-Ziv-Oberhumer) compression algorithm is a

variation of the lz77 compression algorithm. The algorithm is divided into the find

the match, write the unmatched literal data, determine the length of the match, and

write the match tokens parts. The next compression algorithm is the lz4, where

compressed data files consist of LZ4 sequences that contain a token, literal length,

offset, and match length [13]. Zstandart is an lz77-based algorithm developed by

Facebook to support dictionaries, a massive search box, and an entropy coding step

using finite-state entropy and Huffman coding.

3. Related work

A prominent data processing engine for data centers is Hadoop MapReduce enabling

users to avoid the costs of maintaining physical infrastructures. Many studies focus

on MapReduce jobs to boost the performance and minimize the energy consumption

in data centers by orders of magnitude. The authors [14-16] have studied the effect

of data compression to improve the performance and energy efficiency for

MapReduce small workloads only on four nodes clusters. Several methods and

algorithms have been constructed to determine compression approaches to reduce

data loading time and increase concurrency. It dynamically changes the file block

size based on the compression ratio. Two dynamically selectable algorithms

(tentative selection and predictive decision) have been studied to achieve an optimal

I/O performance with a periodical compression algorithm features profiling and real-

time system resource status monitoring. The authors focus on old versions of Hadoop

(based on slots) supporting limited compression algorithms.

Several studies aim to evaluate the influence of various configuration

parameters on energy efficiency in the Hadoop framework. In [17], different energy

models have been developed to predict MapReduce jobs’ energy consumption. The

job execution time and energy consumption have been minimized simultaneously by

adjusting the data replication coefficient and data block size parameters. In [18], the

authors stress each part of MapReduce (map, shuffle, and reduce) and energy-related

components (CPU, IO, and network) of machines. It is recommended to configure

various parameters, such as data replication coefficient, file block size, number

nodes, or type of nodes. A linear regression model has been designed to predict the

energy consumption of MapReduce workloads. The experimental results indicate that

significant energy savings can be achieved from accurate resource allocation and

intelligent dynamic voltage and frequency scaling scheduling for computation-

 9

intensive applications [19]. The paper [20] presents our early work on modifying

Hadoop to allow the scale-down of operational clusters. In [21], strategies are

proposed for adjusting the degree of parallelism, network bandwidth, and power

management functions in the HPC cluster for energy-efficient execution of map-

reduce jobs. They also note that increasing concurrency usually means energy

efficiency or speed-up.

The presented papers mainly explore either data compression or the influence

of various configuration parameters on energy efficiency in the Hadoop/Spark

frameworks to boost the Hadoop MapReduce job performance. This paper aims to

present a system that selects optimal compression tools and tunes the compression

factor to reach the best performance. The latest versions of Apache Hadoop and

Spark’s compression codecs were used to evaluate the benchmarks, tools, and

applications.

4. Methodology

The suggested system allows studying the tradeoff, with compression between saving

CPU and saving I/O, to evaluate the efficiency of Big Data applications using Hadoop

and Spark frameworks based on compression tools and tuning the compression factor.

The performance optimization methodology allows users to explore and optimize Big

Data applications (Fig. 1).

Fig. 1. Methodology skeleton

A decision-making service sends the application type and the complexity to the

service trading module through the REST API to select an optimal configuration.

Several MapReduce type benchmarks, tools, and applications have been studied and

implemented in the simulation module. As a distributed I/O benchmark tool, the

TestDFSIO benchmark is used to stress test HDFS and determine cluster I/O speeds

[22]. TestDFSIO is also essential to identify bottlenecks in networks and stress the

hardware, OS, and Spark/Hadoop configuration on cluster nodes. TestDFSIO

 10

performs (see Table 2 for the list of the options) parallel reading and writing bulk

data using separate Map tasks (or Spark jobs). The statistics are collected in the

Reduce task to get a summary of HDFS throughput and average I/O.

Table 2. TestDFSIO options summary

No Option Description

1 write Generates data and write it to HDFS

2 read Read data

3 append Generate and append data to the existing file

4 clean Remove all generated data

5 nrFiles
Provide the number of files to generate

(the number of map tasks to be executed)

6 fileSize Provide generated file size per each map task

7 resFile Indicate the local path to store the results

8 bufferSize Provide the buffer size in bytes (default 1,000,000 bytes)

There are many MapReduce applications used to test both layers of HDFS and

MapReduce. The Terasort package is used to check the HDFS and MapReduce

layers, consisting of TeraGen designed to generate data, Terasort to sort data, and

TeraValidate to verify data sorting. TeraGen is designed to generate a large amount

of data, which is the input to TeraSort. The size of the generated data and the output

are the input arguments. Terasort sorts the data generated by TeraGen. TeraValidate

checks the sorted TeraSort output. The input and output paths are the TeraSort and

TeraValidate benchmarks arguments.

The WordCount and LogAnalyzer are studied, as MapReduce applications [23].

The WordCount workload reads text files and counts how often words are found. The

LogAnalyzer workload reads log file as an input, detects lines that match the entered

regular expression, and outputs a report that informs if the keyword is present or not

and if present how many times.

The clustering data analysis technique divides the entire data into groups

according to a similarity measure. k-Means clustering is one of the simplest,

powerful, and popular unsupervised machine learning algorithms in Data Science

[24]. Parallel k-Means MapReduce application has been used, allowing to manage

large datasets finding distances between objects [25]. 1, 2, and 4 centroids have been

identified for the experiments to allocate every data point to the nearest cluster.

The input data is compressed using the compression algorithms described in the

Background section. Three types of input data, seven compression algorithms and

five workloads (TestDFSIO, TeraSort, WordCount, LogAnalyzer, k-Means), are

evaluated in Hadoop and Spark environments metrics (Table 3) to study environment

and compression algorithms for different workloads.

Table 3. Evaluation metrics

No Metric Description

1 CPU CPU usage percentages at 1-second intervals

2 Memory Memory usage percentages at 1-second intervals

3 I/O Read and write counts at 1-second intervals

4 Network Bytes sent and received

5 Time Job execution time (seconds)

 11

The Armenian e-Infrastructure is used for the studies and experiments, a

complex national IT infrastructure consisting of networking, data, and distributed

computing infrastructures [26].

5. Experiments

Mainly, the Hadoop/Spark cluster consisting of a master and 16 slave nodes is used

for the experiments with five distinct configurations: 1+4, 1+8, and 1+16. Each node

in the cluster runs the Openstack middleware with one virtual machine per node using

Ubuntu server 18.04 operating system, 3 GB of memory, and a 120 GB SATA shared

hard disk. The Hadoop version 3.2.1, Spark version 2.4.5, Java JDK version 1.8, and

HDFS block size 128 MB are used. The replication factor is set at 2 (default value

is 3) to facilitate the decommissioning of data nodes. The total number of experiments

per Apache Hadoop and Spark environment is 240.

4 GB, 8 GB, and 16 GB data workload are carried out for all experiments. Data

compression reduces the storage usage. Analyzes of compressed and raw-files

compression ratios are illustrated in Fig. 2.

Fig. 2. Compression ratio for 4 GB, 8 GBB, and 16 GB data workloads

Fig. 2. shows the best compression ratio with a 13-17% of the average value for

gzip, Zstandard, and bzip2 algorithms. The compression ratio difference between

gzip and bzip2 is about 4%. According to the benchmarks, the execution time of gzip

is about seven times faster than the bzip2 compression. The Lzo, lz4, and Snappy

algorithms have 26-27% low compression ratios with about seven times faster

execution time compere to the gzip compression.

The remarkable outcome from this experiment is that with Spark with the lz4

compression format, and with 8 GB and 16 GB data sets, it was possible to obtain a

 12

47% improvement at the cost of a 15-25% and 18-28% memory usage for

uncompressed input data; 20-70% CPU and 18-20% memory usage for splittable

compressed data; and 8-10% CPU and 14-28% memory usage for non-splittable

compressed data. The LogAnalyzer’s execution time for Hadoop is optimized up to

4.4% with the lz4 compression format regardless of the input data size. The standard

deviation for Hadoop is up to 2% when eight-node and four-node are implemented,

and 9% for eight-node and 27% for four-node configurations for Spark. The average

CPU usage of all nodes on the Hadoop cluster is 6-6.5%, while the memory usage is

12-16.5%. On Spark for uncompressed input data, the average CPU usage is 15-25%

and 18-28% memory, for splittable compressed data 20-70% CPU and 18-20%

memory, for non-splittable compressed data 8-10% CPU and 14-28% memory. On

Hadoop, average resource usage is almost the same.

Fig. 3. The LogAnalyzer experiment performs for 4 GB, 8 GB,

and 16 GB data on 16 nodes Hadoop and Spark configuration

The picture is different if the WordCount massive simulation application is

studied instead of the LogAnalyzer (see Fig. 4). The experiments show that in the

case of using 16 GB input data, the compression codec slightly improves the

execution time for the Hadoop framework and significantly improves the execution

time framework. lz4 and lzo codecs show the best performance for both cases. Within

the Hadoop lz4 has a bit higher performance than lzo and on Spark the opposite (lzo

shows lower execution time). The Hadoop execution time for 8 and 16 nodes

configuration is almost the same, but on four-node, the average execution time

increases by 1.4%. On the Spark 8 node cluster, the average execution time increases

by 17% and on the four-node cluster by 51%. On the Hadoop cluster, the average

CPU usage is 5.3-6.7% and memory 12-17.3%. On the Spark cluster with

uncompressed input data, CPU usage is 20-47% and memory 30-42%. For input data

compressed with non-splittable codec, the average CPU usage is 6-7%, memory 20-

30%, and for data compressed with splittable codec CPU 20-50%, memory 30-70%.

As LogAnalyzer for WordCount job on the Hadoop environment, the average

resource usage is almost the same. The best performance for Wordcount job shows

 13

lzo codec, which is 8% faster than uncompressed data but uses 12% more CPU and

23% more memory on average.

Fig. 4. WorCount experiment performance for 4 GB, 8 GB,

and 16 GB data on 16 nodes Hadoop and Spark configuration

The experiments show that the splittable codecs improve the execution time of

LogAnalyzer and WordCount applications, besides the Bzip2 slow compression

algorithm for the Hadoop cluster. Gzip and Snappy non-splittable codecs decrease

the storage size and increase execution time. The splittable compression codecs have

a substantial impact on the Spark environment. The compression codecs were not

used for TeraGen and TestDFSIO benchmarks, as an algorithm artificially generates

the data. Fig. 5 shows the TestDFSIO benchmark’s execution time on Hadoop and

Spark environments with 16 node configurations.

Fig. 5. TestDFSIO benchmark execution time for 4 GB, 8 GB, and 16 GB data on 16 node

Hadoop/Spark

On eight-node configuration cluster benchmarks with write option work in the

approximate same time. The deviation for Hadoop is 2%, and Spark is 1%. For

reading option execution time increases by 82% are on Hadoop and 31% on Spark.

On four-node configuration, write works 4% slower on Hadoop and 18% on Spark,

 14

for read option works three times slower on both environments. Fig. 6 shows

TeraGen, TeraSort, TeraValidate benchmark’s execution time on Hadoop and Spark

environments with 16 node configurations. TeraGen and TeraValidate work faster on

Hadoop and TeraSort on Spark. On average, the simulation time of benchmarks is

12% smaller for Spark compared to Hadoop. On eight-node Hadoop and Spark

clusters, the results of TeraGen and TeraSort are almost the same with only a 2%

difference, but for TeraValidate, the benchmark execution time increases by 20% on

Hadoop and 50% on Spark. On four nodes, Hadoop cluster TeraGen on average is

faster by 13%, Terasort 3%, and Teravalidate is slower by 43% compared with 16

node configuration. On four nodes, Spark cluster TeraGen is faster by 7%, TeraSort

is slower by 4%, and Teravalidate by 72%. In both environments, the average CPU

usage is 5-7%, memory 12-14% on Hadoop, and 15-16% on Spark.

Fig. 6. TeraSort benchmark execution time for 4 GB, 8 GB, and 16 GB data on 16 nodes

Hadoop/Spark

In the k-Means clustering application, the 1 GB, 2 GB, 4 GB input data sizes

are used for the experiments. According to Fig. 7, gzip, snappy, and zstandart codecs

show almost the same performance as if the input is uncompressed.

Fig. 7. K-means benchmark execution time for 1 GB, 2 GB, and 4 GB data on 16 nodes Hadoop/Spark

 15

The scenarios are entirely different in the Spark cluster case, as the splittable

codecs besides bzip2 show better performance than if data is uncompressed. The best

performance is reached using the lz4 codec by having about 93% of the compression

ratio. Instead of Hadoop (deviation is 1%), the execution time on average increases

by 30% and 93% on four-node and eight-node configuration of Spark. On Hadoop,

the best performance shows zstandard codec 6.4% faster than for uncompressed data.

On Hadoop k-Means cluster, the average resource usage is almost the same compered

to the LogAnalyzer and WordCount. The average CPU usage is 6-7%, while memory

usage is 16-18%. The worst performance on Spark show gzip, zstandard and snappy

codec, which use, on average, 6-8% CPU and 30-48 % memory. If k-Means input

data is uncompressed, the average CPU usage is 37-50%, while the memory is

30-44%. In the case of the other codecs, the average CPU usage is 11-56%, while the

memory is 26-44%. The best performance on Spark cluster show lz4, which is, on

average, 8.8% faster than for not compressed input data, but uses on average 3% more

CPU and 1% less memory.

The statistical analyzes of the memory and processor usages are presented in

Table 4 to present the characteristics of the data and to study the dispersion. In the

case of TestDFSIO and TeraSort that is very reliable, while the LogAnalyzer,

WordCount, and k-Means, there is a significant variance between the data and the

statistical average.

Table 4. SD and Means analyzes five workloads

No Job
Framework CPU usage Memory usage

Mean (%) SD Mean (%) SD

1 LogAnalyzer
Hadoop 6.29 0.17 15.23 1.18

Spark 31.21 20.36 21.97 3.66

2 WordCount
Hadoop 6.01 0.35 15.57 1.43

Spark 28.93 15.54 42.11 16.81

3 TestDFSIO
Hadoop 4.74 0.49 17.76 0.15

Spark 4.74 0.80 14.85 0.21

4 TeraSort
Hadoop 6.15 0.68 12.96 1.08

Spark 6.21 0.59 15.31 0.44

5 K-means
Hadoop 6.67 0.33 17.21 0.72

Spark 22.58 16.21 34.09 5.70

6. Conclusion

In this paper, a system enabling to find an optimal tradeoff to reach optimal

performance in Apache Hadoop and Spark frameworks is presented. 4 GB, 8 GB, and

16 GB data workloads for diverse applications, including TestDFSIO, TeraSort,

WordCount, LogAnalyzer, and K-means, have been evaluated in Hadoop and Spark

environments. The evaluation results are used by the suggested system to choose an

optimal configuration environment. The compressed data processing analyzes show

that the lz4 codec reaches Hadoop’s best performance regardless of the input data

size. Meanwhile, Spark achieves the best performance with Iz4 only for 4 GB input

data, and zstandard codec for 8 GB and 16 GB cases. It is planned to study the energy-

 16

efficient data transfers of Apache Hadoop and Spark using RDMA-capable networks

like InfiniBand based on the developed methodology [27] and techniques [28].

Acknowledgments: The paper is supported by the European Union’s Horizon 2020 research

infrastructures programme under grant agreement No 857645, project NI4OS Europe

(National Initiatives for Open Science in Europe).

R e f e r e n c e s

1. C h e n, J., Y. C h e n, X. D u, C. L i, J. L u, S. Z h a o, X. Z h o u. Big Data Challenge: A Data

Management Perspective. – Frontiers of Computer Science, Vol. 7, 2013, No 2, pp. 157-164.

2. L u b l i n s k y, B., K. T. S m i t h, A. Y a k u b o v i c h. Professional Hadoop Solutions. Indiana,

USA, John Wiley & Sons, 2013, p. 504.

3. Z a h a r i a, M., R. S. X i n, P. W e n d e l l, T. D a s, M. A r m b r u s t, A. D a v e, X. M e n g,

J. R o s e n, S. V e n k a t a r a m a n, M. J. F r a n k l i n, A. G h o d s i. Apache Spark:

A Unified Engine for Big Data Processing. – Communications of the ACM, Vol. 59, 2016,

No 11, pp. 56-65.

4. C h e n g, D., X. Z h o u, P. L a m a, J. M i k e, C. J i a n g. Energy Efficiency Aware Task

Assignment with DVFS in Heterogeneous Hadoop Clusters. – IEEE Transactions on Parallel

and Distributed Systems, Vol. 29, 2017, No 1, pp. 70-82.

5. N i t u, V., A. K o c h a r y a n, H. Y a y a, A. T c h a n a, D. H a g i m o n t, H. A s t s a t r y a n.

Working Set Size Estimation Techniques in Virtualized Environments: One Size Does Not Fit

All – ACM Meas. Anal. Comput. Syst., Vol. 2, 2018, pp. 1-21.

6. K o t h u r i, P., D. G a r c i a, J. H e r m a n s. Developing and Optimizing Applications in Hadoop.–

Journal of Physics: Conference Series, Vol. 898, 2017, No 5.

7. D e a n, J., S. G h e m a w a t. MapReduce: Simplified Data Processing on Large Clusters. –

Communications of the ACM, Vol. 51, 2008, No 1, pp. 107-113.

8. W o n, H., M. C. N g u y e n, M. S. G i l, Y. S. M o o n, K. Y. W h a n g. Moving Metadata from

Ad Hoc Files to Database Tables for Robust, Highly Available, and Scalable HDFS. – The

Journal of Supercomputing, Vol. 73, 2017, No 6, pp. 2657-2681.

9. U t h a y a k u m a r, J., T. V e n g a t t a r a m a n, P. D h a v a c h e l v a n. A Survey on Data

Compression Techniques: From the Perspective of Data Quality, Coding Schemes, Data Type

and Applications. – Journal of King Saud University – Computer and Information Sciences,

2018.

10. L i u, L. Y., J. F. W a n g, R. J. W a n g, J. Y. L e e. Design and Hardware Architectures for Dynamic

Huffman Coding – IEEE Proceedings-Computers and Digital Techniques, Vol. 142, 1995,

No 6, pp. 411-418.

11. F e n w i c k, P. M. The Burrows-Wheeler Transform for Block Sorting Text Compression:

Principles and Improvements. – The Computer Journal, Vol. 39, 1996, No 9, pp. 731-740.

12. F a n g, J., J. C h e n, Z. A l-A r s, P. H o f s t e e, J. H i d d e r s. Work-in-Progress: A High-

Bandwidth Snappy Decompressor in Reconfigurable Logic. – In: Proc. of IEEE International

Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Turin,

Italy, 30 September – 5 October 2018, pp. 1-2.

13. L i u, W., F. M e i, C. W a n g, M. O’N e i l l, E. E. S w a r t z l a n d e r. Data Compression Device

Based on Modified LZ4 Algorithm. – IEEE Transactions on Consumer Electronics, Vol. 64,

2018, No 1, pp. 110-117.

14. R a t t a n a o p a s, K., S. K a e w k e e r e e. Improving Hadoop MapReduce Performance with Data

Compression: A Study Using Wordcount Job. – In: Proc. of 14th IEEE International

Conference on Electrical Engineering/Electronics, Computer, Telecommunications and

Information Technology (ECTI-CON’17), 2017, pp. 564-567.

15. H a i d e r, A., X. Y a n g, N. L i u, X. H. S u n, S. H e. IC-Data: Improving Compressed Data

Processing in Hadoop. – In: Proc. of 22nd IEEE International Conference on High

Performance Computing (HiPC’15), 2015, pp. 356-365.

 17

16. C h e n, Y., A. G a n a p a t h i, R. H. K a t z. To Compress or Not to Compress-Compute vs IO

Tradeoffs for Mapreduce Energy Efficiency. – In: Proc. of 1st ACM SIGCOMM Workshop

on Green Networking, 2010, pp. 23-28.

17. L a n g, W., J. M. P a t e l. Energy Management for MapReduce Clusters. – In: Proc. of VLDB

Endowment, Vol. 3, 2010, No 1-2, pp. 129-139.

18. L i, W., H. Y a n g, Z. L u a n, D. Q i a n. Energy Prediction for Mapreduce Workloads. – In: Proc.

of 9th IEEE International Conference on Dependable, Autonomic and Secure Computing,

2011, pp. 443-448.

19. W i r t z, T., R. G e. Improving Mapreduce Energy Efficiency for Computation Intensive Workloads.

– In: Proc. of IEEE International Green Computing Conference and Workshops, 2011,

pp. 1-8.

20. L e v e r i c h, J., C. K o z y r a k i s. On the Energy (in) Efficiency of Hadoop Clusters. – ACM

SIGOPS Operating Systems Review, Vol. 44, 2010, No 1, pp. 61-65.

21. T i w a r i, N., S. S a r k a r, U. B e l l u r, M. I n d r a w a n. An Empirical Study of Hadoop’s Energy

Efficiency on a HPC Cluster. – Procedia Computer Science, Vol. 29, 2014, pp. 62-72.

22. T a t i n e n i, M., J. G r e e n b e r g, R. W a g n e r, E. H o c k s, C. I r v i n g. Hadoop Deployment

and Performance on Gordon Data Intensive Supercomputer. – In: Proc. of Conference

on Extreme Science and Engineering Discovery Environment: Gateway to Discovery, 2013,

pp. 1-3.

23. N a r k h e d e, S., T. B a r a s k a r. HMR Log Analyzer: Analyze Web Application Logs over

Hadoop MapReduce. – International Journal of UbiComp (IJU), Vol. 4, 2013, No 3,

pp. 41-51.

24. K r i s h n a, K., M. N. M u r t y. Genetic k-Means Algorithm. – IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), Vol. 29, No 3, 1999, pp. 433-439.

25. Z h a o, W., H. M a., Q. H e. Parallel K-Means Clustering Based on MapReduce. – In: CloudCom

2009. LNCS 5931. Berlin, Springer, 2009, pp. 674-679.

26. A s t s a t r y a n, H., V. S a h a k y a n, Y. S h o u k o u r i a n, P. H. C r o s, M. D a y d e,

J. D o n g a r r a, P. O s t e r. Strengthening Compute and Data Intensive Capacities of Armenia.

– In: Proc. of 14th IEEE RoEduNet International Conference – Networking in Education and

Research (NER’15), Craiova, Romania; September 2015, pp. 28-33.

27. A s t s a t r y a n, H., W. N a r s i s i a n, A. K o c h a r y a n, G. da C o s t a, A. H a n k e l,

A. O l e k s i a k. Energy Optimization Methodology for e-Infrastructure Providers. – Willey

Concurrency and Computation: Practice and Experience, Vol. 29, 2017, No 10.

DOI: 10.1002/cpe.4073.

28. N i t u, V., A. K o c h a r y a n, H. Y a y a, A. T c h a n a, D. H a g i m o n t, H. A s t s a t r y a n.

Working Set Size Estimation Techniques in Virtualized Environments: One Size Does Not Fit

All. – Proceedings of the ACM on Measurement and Analysis of Computing Systems, Vol. 2,

2018, No 1, pp. 1-22.

Received: 06.07.2020; Second Version: 10.09.2020; Accepted: 25.09.2020

