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Abstract: The optimization of large-scale data sets depends on the technologies and 

methods used. The MapReduce model, implemented on Apache Hadoop or Spark, 

allows splitting large data sets into a set of blocks distributed on several machines. 

Data compression reduces data size and transfer time between disks and memory but 

requires additional processing. Therefore, finding an optimal tradeoff is a challenge, 

as a high compression factor may underload Input/Output but overload the 

processor. The paper aims to present a system enabling the selection of the 

compression tools and tuning the compression factor to reach the best performance 

in Apache Hadoop and Spark infrastructures based on simulation analyzes. 

Keywords: Hadoop, Spark, data compression, CPU/IO tradeoff, performance 

optimization. 

1. Introduction 

Big Data processing [1] is a resource-intensive operation that uses specific hardware 

and software. Due to the intense Input/Output (I/O) nature of the processing, the 

hardware architecture is different from the traditional High-Performance Computing 

(HPC) clusters or supercomputers, particularly, local disks are required for all data 

nodes. Moreover, the data processing application stack is also significantly different 

from traditional approaches. For instance, the data volume is substantially larger than 

in other operations, and the data sets are poorly structured, and various data types are 

available. 
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The traditional relational database management systems, like SQL queries, are 

incapable of tackling semi-structured or unstructured Big Data processing. Thus, the 

MapReduce model has been introduced, a critical technology for processing and 

generating extensive data sets. Its implementations, such as Apache Hadoop [2] or 

Spark [3], split large data sets into a set of distributed blocks, execute map tasks in 

parallel on these blocks, and finally reduce tasks for the aggregation of results. Data 

compression techniques are used to overcome data storage and network bandwidth 

limitations to process a massive volume of data. In Big Data infrastructures, it 

decreases the size of data chunks to minimize the time delay forced by the I/O 

operation and save space on local disks. Therefore, it is a challenge to find an optimal 

tradeoff, as high compression factor may underload I/O but overload CPU, while a 

weak compression factor may underload CPU but overload I/O. The ideal 

configuration is when both I/O and CPU are used entirely. CPU (respectively I/O) 

should not be waiting for I/O (respectively CPU) to reach the best performance. 

The paper aims to present a system enabling the selection of the compression 

tools and tuning the compression factor to reach the best performance in Hadoop and 

Spark infrastructures based on simulation analysis. Section 2 presents background 

information and the motivation about the technological stack used to implement and 

evaluate the compression techniques. Section 3 reviews related work. Section 4 

presents the methodology of experiments, including the evaluated compression 

algorithms. Section 5 illustrates the experimental results and evaluations, and Section 

6 concludes the paper. 

2. Background and motivation 

The resource optimization addresses the growing needs of Big Data processing and 

analysis. The traditional methods and tools are mainly dedicated to CPU resource 

optimization, but the memory and I/O consume a significant portion of Big Data 

processing resources. Many scientific studies have been dedicated to the memory 

optimizations in hardware [4], kernel memory [5], and middleware [6] layers. The 

paper aims to optimize the resources in the application level using several 

compression algorithms within the Apache Hadoop and Spark frameworks, aiming 

to reduce the size of the files to be processed (to be loaded into memory, and written 

back to the disk). This approach increases the CPU load of the system overall, but as 

already mentioned, the CPU is not the most consumed resource in such systems, and 

it often stays underutilized. In the meantime, the splittable compressing algorithms 

split and merge back the data while using the MapReduce development model. The 

suggested system is based on Apache Hadoop and Apache Spark general-purpose Big 

Data computing frameworks. If the Apache Hadoop is a model for reading and 

writing data processing based on disk, the Apache Spark performs in-memory 

calculations with the resilient distributed data sets. Apache Hadoop is an open-source 

Java-based distributed computing framework built for applications implemented 

using MapReduce parallel data processing paradigm [7] and Hadoop Distributed File 

System (HDFS) [8]. 
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As a distributed file system, HDFS provides a reliable, scalable, and fault-

tolerant distributed data storage. The data is stored as blocks for handling the 

hardware failures. The replication factor shows the number of copies of a block in 

HDFS. MapReduce has become a critical distributed processing model for large-scale 

data-intensive applications like data filtering, feature extraction, or web indexing. 

The Map and Reduce functions are the key components of the MapReduce 

programming model. The Map function processes a key/value pair for generating a 

set of intermediate key/value pairs, while the Reduce function aims to merge all 

intermediate values associated with the same intermediate key. When the Map tasks 

are completed, the intermediate output is shuffled and sorted. The shuffle step is the 

only communication step between data nodes in MapReduce, during which nodes 

begin to swap the intermediate outputs from the map tasks. After shuffling and 

sorting, the reduce phase calls the user-defined reduce task and stores the output on 

HDFS. 

The data compression algorithms are used in the suggested system to reduce the 

data movement cost by increasing the computation time. MapReduce supports the 

implementations of several compression and decompression algorithms called a 

codec. Data compression methods are classified according to data quality, codec 

schemas, data, and application types [9]. The codec allows us to compress and 

decompress data using splittable and non-splittable compression algorithms. The 

splittable compression algorithm splits the file into the compressed and 

uncompressed data blocks with the fixed size of the HDFS file’s block size setting, 

where each of them can be decompressed separately of the others. The Hadoop also 

supports a non-splittable algorithm with a serial decompression, which usually 

requires longer decompression time. Therefore, the tradeoff of data compression 

algorithms depends on various factors, such as degree of compression, data quality 

(with or without loss), compression algorithm type, or data type. The degree of data 

size or I/O reduction depends on the compression ratio, which equals compressed 

data divided into the uncompressed data size. The compression ratio relies on the data 

and the compression algorithm. A lower ratio means less memory and I/O usages. 

The data compression in Hadoop and Spark frameworks increases the storage 

space and improves performance to compute the job. The compression can be 

implemented for input data, intermediate Map output data, and Reduce output data 

stages. Intermediate compression of the map output reduces network usage during 

the Mapreduce shuffle step. All nodes begin to communicate with each other and 

collect the map output as the phase reduces input. If the input or intermediate output 

of the map phase is compressed, the framework chooses a decompression algorithm 

before processing according to the file extension (Тable 1). 

Table 1. A summary of compression formats available in Hadoop 

No Compression format File extension Splittable 

1 gzip .gz No 

2 bzip2 .bz2 Yes 

3 snappy .snappy Yes (container file formats) 

4 Lzo .lzo Yes (indexing algorithm) 

5 lz4 .4mc Yes (4MC library) 

6 zstandart .4mz Yes (4MC library) 
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The data is stored securely, as all selected compression codecs are lossless. The 

gzip and deflate codecs use the deflate algorithm as a combination of lz77 and 

Huffman Coding [10]. The lz77 compression algorithm replaces duplicate bit 

positions regarding their previous positions. The difference between gzip and deflate 

is the Huffman encoding phase. The splittable compression bzip2 codec uses the 

Burrows-Wheeler (block-sorting) text compression and Huffman coding [11] 

algorithms. Bzip2 compresses data blocks independently and can compress data 

blocks in parallel. As a fast data compression and decompression library, snappy uses 

the ideas from lz77 [12]. Snappy blocks are non-splittable, but the files in the snappy 

blocks are splittable. The lzo (Lempel-Ziv-Oberhumer) compression algorithm is a 

variation of the lz77 compression algorithm. The algorithm is divided into the find 

the match, write the unmatched literal data, determine the length of the match, and 

write the match tokens parts. The next compression algorithm is the lz4, where 

compressed data files consist of LZ4 sequences that contain a token, literal length, 

offset, and match length [13]. Zstandart is an lz77-based algorithm developed by 

Facebook to support dictionaries, a massive search box, and an entropy coding step 

using finite-state entropy and Huffman coding. 

3. Related work 

A prominent data processing engine for data centers is Hadoop MapReduce enabling 

users to avoid the costs of maintaining physical infrastructures. Many studies focus 

on MapReduce jobs to boost the performance and minimize the energy consumption 

in data centers by orders of magnitude. The authors [14-16] have studied the effect 

of data compression to improve the performance and energy efficiency for 

MapReduce small workloads only on four nodes clusters. Several methods and 

algorithms have been constructed to determine compression approaches to reduce 

data loading time and increase concurrency. It dynamically changes the file block 

size based on the compression ratio. Two dynamically selectable algorithms 

(tentative selection and predictive decision) have been studied to achieve an optimal 

I/O performance with a periodical compression algorithm features profiling and real-

time system resource status monitoring. The authors focus on old versions of Hadoop 

(based on slots) supporting limited compression algorithms. 

Several studies aim to evaluate the influence of various configuration 

parameters on energy efficiency in the Hadoop framework. In [17], different energy 

models have been developed to predict MapReduce jobs’ energy consumption. The 

job execution time and energy consumption have been minimized simultaneously by 

adjusting the data replication coefficient and data block size parameters. In [18], the 

authors stress each part of MapReduce (map, shuffle, and reduce) and energy-related 

components (CPU, IO, and network) of machines. It is recommended to configure 

various parameters, such as data replication coefficient, file block size, number 

nodes, or type of nodes. A linear regression model has been designed to predict the 

energy consumption of MapReduce workloads. The experimental results indicate that 

significant energy savings can be achieved from accurate resource allocation and 

intelligent dynamic voltage and frequency scaling scheduling for computation-
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intensive applications [19]. The paper [20] presents our early work on modifying 

Hadoop to allow the scale-down of operational clusters. In [21], strategies are 

proposed for adjusting the degree of parallelism, network bandwidth, and power 

management functions in the HPC cluster for energy-efficient execution of map-

reduce jobs. They also note that increasing concurrency usually means energy 

efficiency or speed-up. 

The presented papers mainly explore either data compression or the influence 

of various configuration parameters on energy efficiency in the Hadoop/Spark 

frameworks to boost the Hadoop MapReduce job performance. This paper aims to 

present a system that selects optimal compression tools and tunes the compression 

factor to reach the best performance. The latest versions of Apache Hadoop and 

Spark’s compression codecs were used to evaluate the benchmarks, tools, and 

applications. 

4. Methodology 

The suggested system allows studying the tradeoff, with compression between saving 

CPU and saving I/O, to evaluate the efficiency of Big Data applications using Hadoop 

and Spark frameworks based on compression tools and tuning the compression factor. 

The performance optimization methodology allows users to explore and optimize Big 

Data applications (Fig. 1). 

 

Fig. 1. Methodology skeleton 

A decision-making service sends the application type and the complexity to the 

service trading module through the REST API to select an optimal configuration. 

Several MapReduce type benchmarks, tools, and applications have been studied and 

implemented in the simulation module. As a distributed I/O benchmark tool, the 

TestDFSIO benchmark is used to stress test HDFS and determine cluster I/O speeds 

[22]. TestDFSIO is also essential to identify bottlenecks in networks and stress the 

hardware, OS, and Spark/Hadoop configuration on cluster nodes. TestDFSIO 
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performs (see Table 2 for the list of the options) parallel reading and writing bulk 

data using separate Map tasks (or Spark jobs). The statistics are collected in the 

Reduce task to get a summary of HDFS throughput and average I/O. 

Table 2. TestDFSIO options summary 

No Option Description 

1 write Generates data and write it to HDFS 

2 read Read data 

3 append Generate and append data to the existing file 

4 clean Remove all generated data 

5 nrFiles 
Provide the number of files to generate  

(the number of map tasks to be executed) 

6 fileSize Provide generated file size per each map task  

7 resFile Indicate the local path to store the results 

8 bufferSize Provide the buffer size in bytes (default 1,000,000 bytes) 

There are many MapReduce applications used to test both layers of HDFS and 

MapReduce. The Terasort package is used to check the HDFS and MapReduce 

layers, consisting of TeraGen designed to generate data, Terasort to sort data, and 

TeraValidate to verify data sorting. TeraGen is designed to generate a large amount 

of data, which is the input to TeraSort. The size of the generated data and the output 

are the input arguments. Terasort sorts the data generated by TeraGen. TeraValidate 

checks the sorted TeraSort output. The input and output paths are the TeraSort and 

TeraValidate benchmarks arguments. 

The WordCount and LogAnalyzer are studied, as MapReduce applications [23]. 

The WordCount workload reads text files and counts how often words are found. The 

LogAnalyzer workload reads log file as an input, detects lines that match the entered 

regular expression, and outputs a report that informs if the keyword is present or not 

and if present how many times.  

The clustering data analysis technique divides the entire data into groups 

according to a similarity measure. k-Means clustering is one of the simplest, 

powerful, and popular unsupervised machine learning algorithms in Data Science 

[24]. Parallel k-Means MapReduce application has been used, allowing to manage 

large datasets finding distances between objects [25]. 1, 2, and 4 centroids have been 

identified for the experiments to allocate every data point to the nearest cluster. 

The input data is compressed using the compression algorithms described in the 

Background section. Three types of input data, seven compression algorithms and 

five workloads (TestDFSIO, TeraSort, WordCount, LogAnalyzer, k-Means), are 

evaluated in Hadoop and Spark environments metrics (Table 3) to study environment 

and compression algorithms for different workloads. 

Table 3. Evaluation metrics 

No Metric Description 

1 CPU CPU usage percentages at 1-second intervals 

2 Memory Memory usage percentages at 1-second intervals 

3 I/O Read and write counts at 1-second intervals 

4 Network Bytes sent and received 

5 Time Job execution time (seconds) 
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The Armenian e-Infrastructure is used for the studies and experiments, a 

complex national IT infrastructure consisting of networking, data, and distributed 

computing infrastructures [26].  

5. Experiments 

Mainly, the Hadoop/Spark cluster consisting of a master and 16 slave nodes is used 

for the experiments with five distinct configurations: 1+4, 1+8, and 1+16. Each node 

in the cluster runs the Openstack middleware with one virtual machine per node using 

Ubuntu server 18.04 operating system, 3 GB of memory, and a 120 GB SATA shared 

hard disk. The Hadoop version 3.2.1, Spark version 2.4.5, Java JDK version 1.8, and 

HDFS block size 128 MB are used. The replication factor is set at 2 (default value  

is 3) to facilitate the decommissioning of data nodes. The total number of experiments 

per Apache Hadoop and Spark environment is 240. 

4 GB, 8 GB, and 16 GB data workload are carried out for all experiments. Data 

compression reduces the storage usage. Analyzes of compressed and raw-files 

compression ratios are illustrated in Fig. 2. 

 
Fig. 2. Compression ratio for 4 GB, 8 GBB, and 16 GB data workloads 

Fig. 2. shows the best compression ratio with a 13-17% of the average value for 

gzip, Zstandard, and bzip2 algorithms. The compression ratio difference between 

gzip and bzip2 is about 4%. According to the benchmarks, the execution time of gzip 

is about seven times faster than the bzip2 compression. The Lzo, lz4, and Snappy 

algorithms have 26-27% low compression ratios with about seven times faster 

execution time compere to the gzip compression. 

The remarkable outcome from this experiment is that with Spark with the lz4 

compression format, and with 8 GB and 16 GB data sets, it was possible to obtain a 
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47% improvement at the cost of a 15-25% and 18-28% memory usage for 

uncompressed input data; 20-70% CPU and 18-20% memory usage for splittable 

compressed data; and 8-10% CPU and 14-28% memory usage for non-splittable 

compressed data. The LogAnalyzer’s execution time for Hadoop is optimized up to 

4.4% with the lz4 compression format regardless of the input data size. The standard 

deviation for Hadoop is up to 2% when eight-node and four-node are implemented, 

and 9% for eight-node and 27% for four-node configurations for Spark. The average 

CPU usage of all nodes on the Hadoop cluster is 6-6.5%, while the memory usage is 

12-16.5%. On Spark for uncompressed input data, the average CPU usage is 15-25% 

and 18-28% memory, for splittable compressed data 20-70% CPU and 18-20% 

memory, for non-splittable compressed data 8-10% CPU and 14-28% memory. On 

Hadoop, average resource usage is almost the same. 

 
Fig. 3. The LogAnalyzer experiment performs for 4 GB, 8 GB,  

and 16 GB data on 16 nodes Hadoop and Spark configuration 

The picture is different if the WordCount massive simulation application is 

studied instead of the LogAnalyzer (see Fig. 4). The experiments show that in the 

case of using 16 GB input data, the compression codec slightly improves the 

execution time for the Hadoop framework and significantly improves the execution 

time framework. lz4 and lzo codecs show the best performance for both cases. Within 

the Hadoop lz4 has a bit higher performance than lzo and on Spark the opposite (lzo 

shows lower execution time). The Hadoop execution time for 8 and 16 nodes 

configuration is almost the same, but on four-node, the average execution time 

increases by 1.4%. On the Spark 8 node cluster, the average execution time increases 

by 17% and on the four-node cluster by 51%. On the Hadoop cluster, the average 

CPU usage is 5.3-6.7% and memory 12-17.3%. On the Spark cluster with 

uncompressed input data, CPU usage is 20-47% and memory 30-42%. For input data 

compressed with non-splittable codec, the average CPU usage is 6-7%, memory 20-

30%, and for data compressed with splittable codec CPU 20-50%, memory 30-70%. 

As LogAnalyzer for WordCount job on the Hadoop environment, the average 

resource usage is almost the same. The best performance for Wordcount job shows 
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lzo codec, which is 8% faster than uncompressed data but uses 12% more CPU and 

23% more memory on average. 

 
Fig. 4. WorCount experiment performance for 4 GB, 8 GB,  

and 16 GB data on 16 nodes Hadoop and Spark configuration 

The experiments show that the splittable codecs improve the execution time of 

LogAnalyzer and WordCount applications, besides the Bzip2 slow compression 

algorithm for the Hadoop cluster. Gzip and Snappy non-splittable codecs decrease 

the storage size and increase execution time. The splittable compression codecs have 

a substantial impact on the Spark environment. The compression codecs were not 

used for TeraGen and TestDFSIO benchmarks, as an algorithm artificially generates 

the data. Fig. 5 shows the TestDFSIO benchmark’s execution time on Hadoop and 

Spark environments with 16 node configurations. 

 
Fig. 5. TestDFSIO benchmark execution time for 4 GB, 8 GB, and 16 GB data on 16 node 

Hadoop/Spark 

 

On eight-node configuration cluster benchmarks with write option work in the 

approximate same time. The deviation for Hadoop is 2%, and Spark is 1%. For 

reading option execution time increases by 82% are on Hadoop and 31% on Spark. 

On four-node configuration, write works 4% slower on Hadoop and 18% on Spark, 
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for read option works three times slower on both environments. Fig. 6 shows 

TeraGen, TeraSort, TeraValidate benchmark’s execution time on Hadoop and Spark 

environments with 16 node configurations. TeraGen and TeraValidate work faster on 

Hadoop and TeraSort on Spark. On average, the simulation time of benchmarks is 

12% smaller for Spark compared to Hadoop. On eight-node Hadoop and Spark 

clusters, the results of TeraGen and TeraSort are almost the same with only a 2% 

difference, but for TeraValidate, the benchmark execution time increases by 20% on 

Hadoop and 50% on Spark. On four nodes, Hadoop cluster TeraGen on average is 

faster by 13%, Terasort 3%, and Teravalidate is slower by 43% compared with 16 

node configuration. On four nodes, Spark cluster TeraGen is faster by 7%, TeraSort 

is slower by 4%, and Teravalidate by 72%. In both environments, the average CPU 

usage is 5-7%, memory 12-14% on Hadoop, and 15-16% on Spark. 
 

 

Fig. 6. TeraSort benchmark execution time for 4 GB, 8 GB, and 16 GB data on 16 nodes 

Hadoop/Spark 

 

In the k-Means clustering application, the 1 GB, 2 GB, 4 GB input data sizes 

are used for the experiments. According to Fig. 7, gzip, snappy, and zstandart codecs 

show almost the same performance as if the input is uncompressed. 

 
Fig. 7. K-means benchmark execution time for 1 GB, 2 GB, and 4 GB data on 16 nodes Hadoop/Spark 
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The scenarios are entirely different in the Spark cluster case, as the splittable 

codecs besides bzip2 show better performance than if data is uncompressed. The best 

performance is reached using the lz4 codec by having about 93% of the compression 

ratio. Instead of Hadoop (deviation is 1%), the execution time on average increases 

by 30% and 93% on four-node and eight-node configuration of Spark. On Hadoop, 

the best performance shows zstandard codec 6.4% faster than for uncompressed data. 

On Hadoop k-Means cluster, the average resource usage is almost the same compered 

to the LogAnalyzer and WordCount. The average CPU usage is 6-7%, while memory 

usage is 16-18%. The worst performance on Spark show gzip, zstandard and snappy 

codec, which use, on average, 6-8% CPU and 30-48 % memory. If k-Means input 

data is uncompressed, the average CPU usage is 37-50%, while the memory is  

30-44%. In the case of the other codecs, the average CPU usage is 11-56%, while the 

memory is 26-44%. The best performance on Spark cluster show lz4, which is, on 

average, 8.8% faster than for not compressed input data, but uses on average 3% more 

CPU and 1% less memory. 

The statistical analyzes of the memory and processor usages are presented in 

Table 4 to present the characteristics of the data and to study the dispersion. In the 

case of TestDFSIO and TeraSort that is very reliable, while the LogAnalyzer, 

WordCount, and k-Means, there is a significant variance between the data and the 

statistical average. 
 

Table 4. SD and Means analyzes five workloads 

No Job 
Framework CPU usage Memory usage 

Mean (%) SD Mean (%) SD 

1 LogAnalyzer 
Hadoop 6.29 0.17 15.23 1.18 

Spark 31.21 20.36 21.97 3.66 

2 WordCount 
Hadoop 6.01 0.35 15.57 1.43 

Spark 28.93 15.54 42.11 16.81 

3 TestDFSIO 
Hadoop 4.74 0.49 17.76 0.15 

Spark 4.74 0.80 14.85 0.21 

4 TeraSort 
Hadoop 6.15 0.68 12.96 1.08 

Spark 6.21 0.59 15.31 0.44 

5 K-means 
Hadoop 6.67 0.33 17.21 0.72 

Spark 22.58 16.21 34.09 5.70 

6. Conclusion 

In this paper, a system enabling to find an optimal tradeoff to reach optimal 

performance in Apache Hadoop and Spark frameworks is presented. 4 GB, 8 GB, and 

16 GB data workloads for diverse applications, including TestDFSIO, TeraSort, 

WordCount, LogAnalyzer, and K-means, have been evaluated in Hadoop and Spark 

environments. The evaluation results are used by the suggested system to choose an 

optimal configuration environment. The compressed data processing analyzes show 

that the lz4 codec reaches Hadoop’s best performance regardless of the input data 

size. Meanwhile, Spark achieves the best performance with Iz4 only for 4 GB input 

data, and zstandard codec for 8 GB and 16 GB cases. It is planned to study the energy-
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efficient data transfers of Apache Hadoop and Spark using RDMA-capable networks 

like InfiniBand based on the developed methodology [27] and techniques [28]. 
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