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Abstract: The problem of thematic indexing of Open Educational Resources (OERs) 

is often a time-consuming and costly manual task, relying on expert knowledge. In 

addition, a lot of online resources may be poorly annotated with arbitrary, ad-hoc 

keywords instead of standard, controlled vocabularies, a fact that stretches up the 

search space and hampers interoperability. In this paper, we propose an approach 

that facilitates curators and instructors to annotate thematically educational content. 

To achieve this, we combine explicit knowledge graph representations with vector-

based learning of formal thesaurus terms. We apply this technique in the domain of 

biomedical literature and show that it is possible to produce a reasonable set of 

thematic suggestions which exceed a certain similarity threshold. Our method yields 

acceptable levels for precision and recall against corpora already indexed by human 

experts. Ordering of recommendations is significant and this approach can also have 

satisfactory results for the ranking problem. However, traditional IR metrics may not 

be adequate due to semantic relations amongst recommended terms being 

underutilized.  

Keywords: Learning objects, Open Educational Resources (OERs), classification, 

word embeddings, thesauri, ontologies, doc2vec, federated search, MeSH. 

1. Introduction 

As the volume and complexity of OERs grows, they are rapidly adopting 

characteristics of Big Data [1] and the task of discovering the most appropriate 

resources to glean together for e-learning purposes becomes cumbersome and error-

prone. Adequate content characterization using authority vocabularies requires 

elaborate, time-consuming, manual efforts, often involving field experts. Even when 

formal thesauri are used, efficient and accurate content indexing is currently an open 

research problem, especially in rich and complex fields like biomedical literature [2].  

In an earlier work we have shown that it is possible to harvest OERs from 

disparate providers in a federated manner and to fetch a least common subset of 
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metadata elements based on a Learning Object Metadata (LOM) schema [3]. User 

keywords are matched against well-structured thematic thesauri expressed in the Web 

Ontology Language (OWL) and then expanded based on their structural and semantic 

relations to enhance recall of the search process. Selected resources can be kept in a 

local institutional infrastructure known as the Learning Object Ontology Repository 

(LOOR) for further reuse [4].  

In this paper, we propose an approach that can help the LOOR users, that is, 

curators and instructors to thematically annotate educational content. First, we reuse 

discovered thesaurus terms to annotate thematically selected OERs. Second, we 

further verify and amend these semantic matches with additional thematic 

suggestions coming from a machine learning process that employs the doc2vec 

algorithm: thesauri terms tagging OERs are automatically learned using word 

embeddings of their title and abstract. By combining these two approaches, we 

demonstrate that it is possible to produce a reasonable set of thematic suggestions, 

which exceed a certain similarity threshold. The added benefit of the collaboration 

between the logical formalism of web ontologies and non-symbolic inference for 

subject classification of OERs lies in the heart of this contribution and, to our 

knowledge, it has been seldom investigated before.  

Our prototype is applied and tested by considering biomedical literature as 

OERs that we harvest from sources such as PubMed [5] and MERLOT [6]. However, 

the proposed approach can be applied to any other domain for which a structured 

thematic vocabulary exists, like what Medical Subject Headings (MeSH) is for the 

biomedical domain [7]. By reusing seed keywords and assigning subject labels to 

OERs, our method also achieves to tackle with the open problem of semantic 

classification or indexing of resources. Such educated subject suggestions would be 

finally amendable by instructors; therefore, their order of presentation is significant. 

It is shown that our approach can also improve on the ranking problem, putting 

relevant terms closer to the top of the list.  

This paper is an extended version of a work published in [8]. First, we extend 

our previous work with new results. These results contribute to the open problem of 

semantic indexing of bibliographic material and improve on the recommendations 

ranking problem. There is also a more thorough description of the research 

contribution. This includes a comparison to related work closest to our approach, 

regarding word embeddings and MeSH indexing of biomedical data. We have 

processed and considered much larger and extended training and test sets (×10) and 

conducted validation at a larger scale. We document a procedure and algorithm for 

dataset synthesis and preprocessing. Finally, new experiments are carried out and 

new metrics about retrieval effectiveness and ranking performance of term 

recommendations are reported. 

In the following, we first review related work in the fields of language modelling 

and machine learning methods for text classification and examine advancements in 

our work relative to the state-of-the-art. Next, in Section 3 we present our 

methodology and architectural details for federated search and subject classification. 

Section 4 describes the design of our experiments, datasets and thesauri used for 

evaluation, as well as the baseline for comparison. A procedure for dataset 
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construction and preparation is introduced. Section 5 discusses results in terms of 

average similarity scores, precision, recall and ranking effectiveness by testing our 

approach on a medical dataset using MeSH and comparing against manually 

recommended terms. Our conclusions and future work are summarized in the last 

Section 6. Detailed evaluation scores are given in the Appendix.  

2. Background and related work 

2.1. Word embeddings 

The mapping of words and phrases into vectors of real numbers, also known as word 

embeddings, addresses the problem of dimensionality reduction in the areas of 

language modelling and feature learning. A learning approach for constructing word 

embeddings, known as word2vec, was proposed in [9]. In this method, vectors come 

as a result of training a shallow neural network, and it is possible to examine syntactic 

and semantic similarities by vector comparison. Likewise, doc2vec computes vectors 

for entire documents or paragraphs rather than mere keywords [10]. Related studies 

use word embedding techniques independently, as well as in combination with others 

in various text classification tasks. These include word2vec [11-13], GloVe [14], 

GloVe, word2vec and fastText [15], sentiment analysis with word2vec and fastText 

[16], information retrieval using a linear classifier and word2vec from a large body 

of text [17], even using word2vec with Principal Component Analysis (PCA) [18]. 

2.2. Topic and entity recognition  

A demanding task is to assign a subject to a collection of OERs. So far, there have 

been relevant studies which, with the use of word embeddings and the PageRank 

algorithm [19-21], present a framework for automatic extraction and ranking of 

keywords. Another study also extends word embedding models and employs the 

simple k-Nearest Neighbor (k-NN) search to predict tags for unseen documents [22]. 

Similarly to our work, these methods use doc2vec word embeddings and associate 

them with tags. However, they are mostly applied for generic topic recognition over 

web sources and do not employ any formal thesaurus or vocabulary. 

The named entity recognition problem is related to subject assignment. 

Particularly, in biomedical studies, the ELMo model [23] which manages to improve 

the detection, for instance of ex genes, is utilized achieving high F-score values 

provided that the model is trained with biomedical data from repositories such as 

PubMed [24]. Finally, a new version of an NCBO Ontology Recommender 2.0 

system which provides high quality recommendations in biomedical data, is proposed 

[25]. It extends the original version, which is a service that receives a biomedical text 

corpus or list of keywords and suggests ontologies (terms), according to new criteria. 

The criteria are four predefined questions which need to be answered. 

2.3. MeSH indexing 

A considerable part of relevant literature deals with the task of MeSH indexing in 

biomedical data. MeSH indexing is the task of assigning relevant MeSH terms based 

on a manual reading of scholarly publications by human indexers. Not only is this 
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manual approach a time-consuming process (it takes 2-3 months for new articles to 

be incorporated) but also a costly one (approximately $10 per article) [2]. The main 

tools for implementing this task are machine learning classifiers, used on a case-by-

case basis.  

Specifically, a related system called MeSH Now [2] classifies candidate terms 

based on their relevance to the target article and selects the one with the highest 

ranking, thus achieving a 0.61 F-score. To achieve this, the authors use k-NN and 

Support Vector Machine (SVM) algorithms.  

Another system is called DeepMeSH [26] and attempts to consider both the 

frequency characteristics of MeSH labels, as well as the semantics and ambiguity of 

the citations themselves. For the former, a deep semantic representation, called  

D2V-TFIDF, is proposed and combines features both from doc2vec and tf-idf. The 

latter is solved by using a learning to rank framework. A k-NN classifier is used to 

score the candidate MeSH headings. This system achieves an F-score of 0.63.  

Another study [27] uses word2vec and applies it to all of the abstracts of the 

PubMed repository. It also considers the use of these vectors as a method to reduce 

dimensionality by allowing greater scalability for hierarchical text classification 

algorithms such as k-NN. Selecting a skip-gram neural network model (fasttext) 

produces 300-sized vectors with various windows from 2 to 25 which researchers call 

MeSH-gram and which yields an F-score of 0.64 [28].  

Taking into account the assumption that similar documents are classified with 

similar MeSH terms, authors in [29] have proceeded to an implementation with an  

F-score of 0.69. This work starts with the conversion of documents into vectors by 

search engine indexing (Elastic Search) and the identification of the most similar 

documents based on cosine similarity. Then, by extracting the terms from these 

documents and by calculating their occurrence frequency in conjunction with their 

similarity, the authors define a scoring function which ranks these MeSH terms. 

Finally, a graph database of the MeSH thesaurus is used to discover hierarchical 

relationships among the terms. Given an unknown text, items from the text corpus 

that are most similar are found and only their terms are retrieved. These terms have 

already been assigned by experts. Thus, candidate terms come from a limited pool of 

recommendations. However, in our approach suggestions are sought within the entire 

set of MeSH terms and the model is responsible for identifying any potential 

structural and semantic similarities with the source text. 

2.4. Discussion  

To the best of our knowledge, the combination of word embedding techniques, in 

particular doc2vec, with ontology-based semantic matching and expansion for 

subject classification of OERs has not been proposed before.  

Several of the related studies [11-13, 15-18] attempt and eventually classify the 

data uniquely into a finite and quite small number of categories, also possessing a 

large number of samples per category. In the present study, however, the subject 

assignment is done with the help of a thesaurus, which contains several thousands of 

labels. Furthermore, each sample is categorized by assigning more than one label to 

it (multi-label classification).  
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Also, most research that deals with the classification problem of a large number 

of classes [2, 24-29] appears to rely on machine learning classifiers or deep neural 

networks. In our work, each thesaurus term has been moved to a vector space after 

training a doc2vec model with some corpus and using MeSH headings as tags. Once 

the model is trained, this allows us to quickly query the model for existing tags and 

perform feature extraction in unknown texts. Consequently, classification and 

indexing of items can be achieved by retrieving the most similar terms stored by the 

model, without the need and overhead of a separate classifier.  

3. Design and methodology 

3.1. Federated search 

To address metadata incompatibilities among OER repositories, the creation and 

maintenance of a semantics-aware Learning Object Ontology Repository (LOOR) 

has been proposed in [4]. By tapping into thesauri and ontologies, flat LO metadata 

can be translated to semantic annotations, which are machine understandable. Within 

the LOOR, LOs can be ingested and different schemata can be aligned with a 

common LO ontology. An outline of this ontology is shown in Fig. 1, combining 

terminology from the LOM standard and Dublin Core.   

 
Fig. 1. Visualization of the LO Ontology Schema classes and properties 

First, a federated query is initiated towards the various repositories. Next, the 

metadata of items returned as responses to the query are harvested and aligned to a 

unified LO Ontology Schema, using a common set of elements and mapping rules. 

The subject of these items is then automatically populated taking as basis the initial 

query keywords in accordance with thematic thesauri for specific knowledge 

domains. At this point, a curator or instructor may review the LO and decide to 

incorporate it into the LO ontology, thus making it available for others to reuse.  
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Currently, data sources include MERLOT II, a large archive of OERs [6], 

Europe PubMed Central, a major repository of biomedical literature [5], ARIADNE 

finder, a European infrastructure for accessing and sharing learning resources [30] 

and openarchives.gr, the entry point for Greek scholarly content. 

3.2. Match SKOS Thesauri 

In an earlier work [3], we have investigated and documented the positive effects of 

query expansion when harvesting OERs. In essence, keywords that initiate harvesting 

are matched against expert terminological knowledge expressed in the form of term 

thesauri following the SKOS model in OWL format [31]. Each keyword can thus be 

expanded into several narrower keywords, which refine the former by performing 

reasoning about the semantic relationships of the matching terms in the thesaurus 

hierarchy. For example, to discover the refinements of a concept, we can expand on 

the transitive closure of the SKOS properties skos:broader / skos:narrower. A single 

thesaurus concept may also contain multiple lexical representations, including 

alternative labels and translations in different languages, as represented by the 

properties skos:preflabel and skos:altlabel.  

The information produced by the exploration of the thesauri term hierarchy is 

maintained and reused to annotate thematically an item, when it is selected for 

addition into the LOOR. As a result, original search keywords are being used as seeds 

to generate appropriate subject annotations for selected LOs. Merely supplying 

arbitrary keywords as subjects would not make much sense; rather, these keywords 

are first matched and refined against formal thematic thesauri and the matches are 

injected as semantic subject annotations into the selected OERs, using the 

lom:keyword property of the LO Ontology Schema. 

As an example, consider the seed keyword medicine. This is matched in the 

thesaurus by a concept with ID D008511 and refined, for example, by a concept with 

ID D009462 (neurology). Bibliographic items matching the various labels of 

D009462 will be automatically indexed with the concept D009462, as well as the 

concept D008511, since this is the topmost parent matching term for the initial 

keyword.  

3.3. Word embeddings 

In parallel to the semantic matching procedure described above, we consider 

constructing and training a machine learning model using doc2vec. Instead of words, 

doc2vec achieves the transfer of entire paragraphs into vectors. We intend to create a 

model that would be able to embed the meaning of terms from a vocabulary 

corresponding to formal domain of knowledge that is, a thesaurus. Then, this model 

can be used to predict those thesaurus terms that are the closest to the learning 

resource, given its title and abstract, i.e., they most closely represent the subject of 

the resource. The title and abstract are the two annotations of the least common subset 

of elements stored in the LOOR with the richest semantic meaning about the resource. 

The other would be the resource itself (i.e., the full text) but using the entire text as 

input would be impractical and slow. There is also some semantic content in the 

keywords of the text. However, they are optional, frequently ad-hoc and are not 
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guaranteed to be precise or to reference standard vocabularies as already pointed out. 

Moreover, the doc2vec algorithm operates on entire paragraphs or phrases instead of 

words. However, proper classification keywords (thesaurus subject annotations) do 

exist in our training set and they are used to tag paragraphs during training.  

The title together with the abstract from each OER form a single body of text. 

This is converted into a list of lowercase tokens, while words with length shorter than 

two and special symbols are removed. Stop words, like articles, conjunctions and 

other commonly occurring words, are generally retained. We opted for keeping this 

set of words in our dataset, because we have seen that this generally improves 

similarity scores, possibly due to the dataset comprising of short titles and abstracts. 

Every OER within the dataset has been already indexed by experts using terms 

from an appropriate thesaurus, like MeSH for the biomedical domain. Each such term 

in the thesaurus has a unique ID, so we select this ID instead of text to deal with the 

multiple text labels of a term. As a result, each body of text (title and abstract) is 

tagged by one or more IDs, one for each term that occurs as its subject annotation in 

the dataset. However, it is unlikely that every possible term of the thesaurus would 

occur in the dataset, so there is a chance that several terms might be missing from the 

learned dictionary. To compensate for this loss, information from the thesaurus 

document is also integrated into the training phase.  

3.4. Integrating semantic annotations and word embeddings 

The two approaches above described are applied sequentially to provide subject 

classification suggestions. This process flow is graphically depicted in Fig. 2. First, 

metadata about OERs are harvested from the remote repositories into the LOOR and 

mapped to the unifying ontology schema. Query keywords seed term matching and 

expansion within the thesaurus ontology are then used. Thesaurus terms so 

discovered are injected as semantic subject annotations into OERs metadata 

(Semantic Matching).  

Next, for each OER, we create the vector of the title and abstract by supplying 

each body of text as an argument to the model (doc2vec). Thematic keywords already 

injected in the previous step are sought in the model dictionary, using the term IDs. 

Terms not occurring in the dictionary are ignored. Based on the model’s output, each 

term gets a similarity score, reflecting the extent to which it matches the OER vector 

and therefore its appropriateness as a subject for the resource.  

In addition, the model also yields similarity scores between the OER and any 

other arbitrary thesaurus term within the dictionary. The top 10 terms with the highest 

similarity score are produced. These terms can be further considered by a curator for 

inclusion when adding the OER into the LOOR. Naturally, the similarity of a 

proposed term to the body text of an item, no matter where it comes from (semantic 

matching or doc2vec itself), is a measure of the quality of this suggestion. Therefore, 

it might be useful to set a threshold above which suggestions are retained or discarded 

otherwise.  
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Fig. 2. Overall system process flow 

 

 

Fig. 3. A specific item gets subject annotations and their similarity scores are computed 

An example demonstrating the subject classification and scoring scheme 

discussed before is depicted in Fig. 3. A specific OER returned by federated search 

(https://doi.org/10.1007/s11657-019-0590-5) is annotated with two terms by the 

semantic matching process. Then, doc2vec computes their similarity scores and 

proposes an addition of 10 subject terms along with their score. 

4. Experimental Setup 

4.1. Evaluation procedure 

To evaluate our methodology, we initially conduct three representative experiments. 

First, we test the trained doc2vec model against part of the training set [32]. This is 

reasonable, since doc2vec can only perform well with texts and words already 

contained in its dictionary.  

Second, we examine performance when arbitrary titles and abstracts are used as 

inputs. For this, we supply another test set that has not been used for training and is 
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therefore unknown to the model. In contrast to word2vec, doc2vec is capable of 

inferring vector representations of body texts not presented before to the model. The 

results of this second experiment are typical of a federated search scenario with 

arbitrary keyword seeds and, therefore, represent our baseline or threshold above 

which term suggestions can be retained. 

Third, we evaluate the quality of suggestions produced by semantic matching 

by computing their average similarity. for the purposes of comparison, we also 

present the average similarity score of the best suggestion made by doc2vec itself. 

The cosine similarity is computed for each sample of the test set used in the three 

experiments and the average performance of the model in all samples is reported.  

Doc2vec training has been performed using the following parameters: train 

epochs 10, size vector 100, learning parameter 0.025, and min count 10. A variety of 

tests were performed to select these specific parameter values. Tests have shown that, 

for a large number of samples, even a small number of epochs, such as 10, is sufficient 

for the model to learn. Additionally, removing words with less than 10 occurrences 

(min count) also creates better and faster vector representations for thesaurus terms. 

The created model is saved so that it can be called directly when appropriate. 

To verify the suitability of the similarity threshold discussed before and get an 

estimate of user satisfaction by the system’s suggestions, we also evaluate as per two 

other dimensions: a) examine retrieval effectiveness in terms of precision and recall 

b) rank effectiveness, to investigate if relevant terms are positioned high enough in 

the suggestion list.  

4.2. Dataset 

For the application of the doc2vec method, a dataset from the PubMed repository 

with records of biomedical citations and abstracts was used 

(https://www.nlm.nih.gov/databases/download/pubmed_medline.html). In 

December of every year, the core PubMed dataset integrates any updates that have 

occurred in the field. Each day, the National Library of Medicine produces update 

files that include new, revised and deleted citations. About 30M records, which are 

collected annually, can be accessed by researchers as of December 2018.  

Each entry in the dataset contains information, such as the title and abstract of 

the article, and the journal, which the article was published in. It also includes a list 

of subject headings that follow the MeSH thesaurus. These headings are selected and 

inserted after manual reading of the publication by human indexers. Indexers 

typically select 10-12 MeSH terms to describe every indexed paper. 

MeSH is a formal, specialized thematic thesaurus that gives uniformity and 

consistency to the indexing and cataloging of biomedical literature. MeSH has been 

already implemented using the SKOS vocabulary specification into OWL format 

[33]. It is a relatively large and dense thesaurus, comprising 23,883 SKOS concepts 

(thesaurus terms).  

The data is available in XML format [34]. The elements finally used for doc2vec 

training are ArticleTitle, AbstractText that represent the body text; and, from the 

MeshHeadingList, the DescriptorName with MajorTopicYN=“Y” or the 

DescriptorName that includes at least one QualifierName with MajorTopicYN=“Y”.  
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The information contained in the DescriptorName is a unique ID of the format, e.g., 

D007069 and it represents the labels of the text (thesaurus terms). Fig. 4 shows an 

example of an XML record representing a literature item with all the elements to be 

used for training.  
 
<?xml version="1.0" encoding="UTF-8"?> 

<ArticleTitle>Demonstration of tumor inhibiting 

properties...</ArticleTitle> 

<Abstract> 

  <AbstractText>A report is given on the recent discovery of outstanding 

   immunological properties... 

  </AbstractText> 

</Abstract> 

<MeshHeadingList> 

  <MeshHeading> 

    <DescriptorName UI="D007069" 

MajorTopicYN="Y">Ifosfamide</DescriptorName> 

    <QualifierName UI="Q000494" 

MajorTopicYN="N">pharmacology</QualifierName> 

  </MeshHeading> 

  <MeshHeading> 

    <DescriptorName UI="D007109" 

MajorTopicYN="N">Immunity</DescriptorName> 

    <QualifierName UI="Q000187" MajorTopicYN="Y">drug 

effects</QualifierName> 

  </MeshHeading> 

  <MeshHeading> 

    <DescriptorName UI="D007165“ 

MajorTopicYN="N">Immunosuppression</DescriptorName> 

  </MeshHeading> 

</MeshHeadingList> 

Fig. 4. Sample XML record from the PubMed repository 

For the initial set of experiments, a training set of 155,963 samples 

(bibliographic items) have been used. These samples contain a total of 420,165 MeSH 

terms, i.e., an item may be annotated with multiple terms. Unique terms are 11,686 

and cover 49% of the total vocabulary of 23,883 words. For completeness, 11,883 

additional terms were selected from the thesaurus file. The selection criterion for 

these terms is to have descriptions, specifically the existence of the scopeNote field, 

which represents a brief description of the term. Thus, 99% of the dictionary is finally 

covered, since we have 23,569 unique terms. However, for these additional terms, 

the model is trained using only a single body of text, i.e., the contents of the 

scopeNote field; therefore, such terms may not be adequately learned yet. 

Additionally, an even larger dataset was adopted to perform experiments for the 

evaluation of the model regarding its precision and recall for producing 

recommendations. This set contains 1M samples and 16,782 unique MeSH terms, 

which cover 70% of the total vocabulary. Another 10K items, not used during training 

and therefore unknown to the model, have been reserved as a test set for our 

experiments. However, it may contain some terms beyond the coverage of the 

training set. Such terms will never be proposed, therefore precision and recall values 

reported would always represent lower bounds. The quantitative characteristics of the 

datasets used for training and testing are summarized in Table 1. 
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Table 1. Details of dataset 

Metrics Initial dataset Extended dateset Test set 

Total items 155,963 1,000,000 13,470 

Total annotations 420,165 3,208,301 41,374 

Average (terms per item) 3 3 3 

Thesaurus Terms Coverage Rate (%) 49%+50% 70% 25% 

4.3. Dataset preparation 

Data with the biomedical citations and abstracts were obtained from the PubMed 

repository through FTP. In the PubMed baseline folder there are 972 zip files, up to 

December 2018. Each of these files is individually downloaded locally, unzipped, 

and sent for parsing using a Python script. In this process, the useful information is 

isolated and stored in two lists for each file. Specifically, the abstract is placed 

immediately after the title and is added to the first list, while all its respective tags are 

inserted into a second list. Lastly, the file is deleted from the local disk for space 

saving. The process is repeated for all available files (Algorithm 1). In order to make 

it easier to manage the files that are generated, the process stops per 100 files and 

from the lists two csv files are created, one from each list. When the process is 

completed, the data are ready for the next stage of pre-processing to be ready for the 

training phase.  

Algorithm 1. Dataset preparation procedure 

 Input: XML files from repository 

 Output: two CSV files 

Step 1. for each file ∈ repository do 

Step 2. connect to FTP server 

Step 3. get file to local disk 

Step 4. parse file – the useful information is isolated 

Step 5. Store the useful information in two lists  

Step 6. delete file from local disk 

Step 7. end for 

Step 8. write lists to CSV files  

5. Experiments and results 

5.1. Similarity scores 

For the first experiment, we check the model against a subset of the training set, 

containing 15,383 items. For each bibliographic item, we create the vector of the title 

and abstract by supplying each body of text as an argument to the model. For each 

item’s keyword we retrieve the vector which should already exist within the model’s 

dictionary using the term ID. These two elements should normally have a high degree 

of correlation. Then, we calculate the cosine similarity between the two. Because 

each item can be annotated with multiple terms, the total annotations count is 46,693. 

Results are depicted in Fig. 5 (left). The mean and the standard deviation of the results 

are 0.43 and 0.12, respectively. 



 106 

 
Fig. 5. Similarity distribution over a subset of the training set (left) and unseen text (right) 

 

For the second experiment, we use a different dataset, unknown to the model, to 

check its reliability. This is comprised of another 13,470 items that have not been 

used for training. MeSH keywords indexing these items occur in the first 49% of the 

total vocabulary that has been learned from the PubMed training dataset. The total 

annotations count is 41,374. Results are of interest as, even with unseen body texts, 

the model responds well regarding their similarity, as depicted in Fig. 5 (right). The 

mean and the standard deviation of the results are 0.36 and 0.12 respectively. We 

notice a slight drop in the average similarity score due to the dataset being unknown. 

However, we select this score as our threshold for term selection, considering the 

worst-case scenario where the model is oblivious to the body texts used as inputs.  

A third experiment is conducted with a dataset of 1,405 items. These are the 

items returned by the federated search procedure using various selected keywords as 

seeds. Their subjects have been assigned by Semantic Matching. The mean and the 

standard deviation of the average similarity scores for these annotations are 0.30 and 

0.13, respectively (Case 1). Out of 1,805 subject assignments, 596 (33%) pass the 

0,36 threshold set before for arbitrary texts and can be ultimately retained when 

selecting the item for addition into the LOOR.  
 

 
 

Fig. 6. Similarity distribution over semantic matching annotations (Case 1) and doc2vec 

suggestions (Case 2) 
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Next, we let the model produce its own suggestions asking for the top 10 terms 

with the highest similarity score (Case 2). The best suggestion made has a mean of 

0.58 and a standard deviation of 0.07 (Case 2). Final results are depicted in Fig. 6. 

Additionally, the top 10 suggestions have a mean of 0.54 and a standard deviation of 

0.07. In summary, the results of the above experiments are shown in Table 2. 

Table 2. Experiment results for similarity scores 

Metrics Training subset 
Test set 

(unseen) 
Semantic matching annotations doc2vec suggestions 

Total annotations 46,693 41,374 1,805 1,405 

Similarity Average   0.43 0.36 0.30 0.58 

Similarity Stdev 0.12 0.12 0.13 0.07 

 

A relatively increased similarity is noticed in comparison to all previous 

experiments. This is justified by the fact that the model is no longer limited to 

checking specific annotations. Now it is given the freedom to choose the most similar 

vector from a rather large repository of 23,569 unique terms contained in its 

dictionary. Therefore, on account of the reliability offered by the doc2vec model, as 

well as the data used for training, suggestions made by the model itself are determined 

by greater similarity.  

5.2. Retrieval effectiveness 

Average similarity may be a relative performance measure but says little about the 

actual quality of the suggestions made by the system. To assess this, we also calculate 

precision and recall by comparing to the terms already inserted by the human 

indexers. These terms comprise the ground truth for these experiments and convey 

the meaning of the “gold standard” for user satisfaction, given that the system is 

intended for expert users (educators, instructors, curators). For this purpose, we 

consider a test set that is unknown to the model. We expect to derive conclusions 

about the suitability of the selected selection threshold (similarity > 0.36) and verify 

how close the system classification suggestions actually are to the experts’ tags.  

For precision P, we check how many of the system proposed tags that exceed 

the threshold are correct, i.e., they coincide with expert tags,  

(1) 𝑃 =  
Suggested terms  that are relevant

Suggested terms
. 

For recall R, we measure how many system suggestions, again above the 

threshold, are contained within the list of expert tags, i.e., how many correct tags the 

system is able to retrieve,  

(2) 𝑅 =  
Suggested terms that are relevant 

Relevant terms
. 

To appreciate the threshold level, we have conducted a set of experiments 

ranging over various values for the suggestion threshold (see Appendix).  

The system’s aim is to recommend appropriate thesaurus terms for educators to 

choose from and annotate items. They are presented in the order of their similarity 

score. Consequently, there is little point in assessing terms that come later on the list, 

since users are likely apt to consult only the first few recommendations and discard 

the rest.  
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To mitigate this effect, we report precision and recall at rank k: P@k is the 

precision achieved when examining only the first k terms suggested by the system, 

while R@k is the recall calculated in a similar fashion. Values reported represent 

mean values for precision and recall @k. This means that we treat the annotations of 

each item as a single information need and take the mean value of these metrics over 

all items of the test set, i.e., they are macroaveraged. Items in the test set for which 

there are no suggestions exceeding the specific threshold do not contribute negatively 

during metrics calculation. 

As mentioned, in addition to the annotations proposed by semantic matching, 

the model proposes an additional of 10 terms at most, with the threshold acting as a 

hard cap. We measure P and R @1, @3 and @10. Rank 10 is of interest especially 

for recall, since it is usually the average of terms suggested by experts on the test set 

and coincides with the upper limit on the model’s suggestions; rank 3 is important 

for precision, because it is the actual average of terms that are designated as major 

topics, which are the only ones considered for training. 

It is important to note that it is impossible for precision to take maximum values 

unless the number of relevant terms equals or exceeds k. For example, if there is only 

one relevant term, even a perfect system could only achieve a P@3 of 0.33. For this 

reason, we also report R-precision, a metric that evaluates precision as an average of 

P@ki over all test items i, where ki is the number of relevant terms for i: 

(3) 𝑅˗precision =
1

𝑛
∑ P@𝑘𝑖 .𝑛

𝑖=1  

Vector inference for unknown texts by the model exhibits some degree of 

randomness, so the number of matching terms (relevant suggestions) may somewhat 

fluctuate between experiments but is statistically insignificant. The table below 

summarizes precision and recall at ranks 1, 3 and 10, as well as R-precision for  

three values of the threshold. 
 

Table 3. Mean precision, recall and R-precision at different ranks and threshold values 

Threshold 
Number of items with terms  

above threshold 
Metric Value Metric Value 

0.36 13,470 P@1 0.30 R@1 0.12 

0.48 11,887 P@1 0.32 R@1 0.13 

0.60 2379 P@1 0.46 R@1 0.21 

0.36 13,470 P@3 0.19 R@3 0.22 

0.48 11,880 P@3 0.19 R@3 0.21 

0.60 2411 P@3 0.17 R@3 0.23 

0.36 13,469 P@10 0.10 R@10 0.36 

0.48 11,895 P@10 0.07 R@10 0.27 

0.60 2374 P@10 0.05 R@10 0.23 

0.36 13,470 R-Precision 0.21   

0.48 11,888 R-Precision 0.20   

0.60 2375 R-Precision 0.23   

 

Other than the standard tradeoff between precision and recall, we first notice 

that the higher the threshold the better the quality of results is for P and R @1. Greater 

values for recall are met when allowing up to 10 suggestions (@10). However, an 
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increase in the threshold causes recall to drop. This makes sense, because there may 

be considerably fewer than 10 suggestions for higher thresholds, i.e., only few of the 

terms pass the similarity threshold, thus leaving out some relevant terms. On the 

contrary, R@3 remains almost constant because this is the average number of terms 

actually contained in the test set.  

Likewise, the threshold seems to have little effect for P@3, other than a small 

drop of 0.02. On average, one suggested term out of three would be relevant for each 

item more than 60% of the time. Again, for P@10, only few of the recommendations 

pass the higher values of the threshold. In addition, there is an average of three 

relevant terms per item, which justifies the low scores for P@10.  

R-precision is not affected by the count of relevant items in the test set and 

appears slightly improved than, for example, P@3. It also avoids the detrimental 

effect noticed in P@10. Still, for higher threshold values, the terms recommended 

may be fewer than the actual relevant terms. 

5.3. Ranking effectiveness 

In the context of the current evaluation, the ranking effectiveness of the model can 

be expressed via the Mean Average Precision (MAP) [35]. To calculate this, we first 

measure the average precision for each item. The Average Precision (AP) of term 

suggestions for an item (body text) s can be expressed as follows:  

(4) AP𝑠 =
∑ P@𝑟(𝑡)𝑡∈𝑇𝑠

|𝑇𝑠|
. 

Here, Ts denotes the set of suggested terms that are relevant for item s, based on 

the ground truth, r(t) denotes the rank of term t and P@𝑟(𝑡) denotes the precision at 

rank r(t), i.e., the fraction of suggested items that are relevant up to the r(t)-th position 

that is 

(5) P@𝑟(𝑡) =  
{relevant terms up to the 𝑟(𝑡)˗th position}

𝑟(𝑡)
 . 

Given that the number of our model suggestions is bounded, r(t) can range from 

one up to ten and can take any integer value in between, i.e., r(t) ∈ {1, 2, 3,…,10}. 

For example, if there are three relevant suggestions for an item s, and they are ranked 

at the first three positions of the suggestions list, then 

(6) AP𝑠 =
1+2/2+3/3

3
= 1. 

If, however, there are three relevant suggestions and they are ranked at the first, 

second and sixth position respectively (other suggestions being irrelevant), then 

(7) AP𝑠 =
1+2/2+3/6

3
= 0.83. 

Therefore, it can be seen that the closest to 1 the AP for an item is, the highest 

relevant terms are ranked by our model. The MAP on the test item set S is the mean 

of the AP for all items tested and can be computed as 

(8) MAP =
1

|𝑆|
∑ AP𝑠𝑠∈𝑆 . 

The following table shows results for MAP@3 and MAP@10, by considering 

up to the third and up to the 10-th recommended term respectively. MAP@1 would 

always equal 1, given that Ts only includes suggested terms that are relevant.  
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As discussed, the ranking of recommendations depends on their similarity score. 

Terms with higher similarity are positioned first in the list of suggestions. The results 

presented at Table 4 serve again as validation of the fact that the similarity measure 

produced by the model is highly relevant and correlated with the quality of 

suggestions. Therefore, it comes as no surprise that an increase in the threshold 

produces considerable increase in MAP at both ranks reported. When there are 

relevant terms recommended by the system, they are indeed placed in higher 

positions of the suggestion list most of the time. In addition, occurrence of relevant 

terms in early positions of the list becomes more frequent as the threshold increases. 

Table 4. MAP at different ranks and threshold values 

Threshold 

Number of items 

with terms above 

threshold 

Metric Value 

0.36 6683 MAP@3 0.76 

0.48 5872 MAP@3 0.80 

0.60 1206 MAP@3 0.95 

0.36 9579 MAP@10 0.56 

0.48 6800 MAP@10 0.70 

0.60 1208 MAP@10 0.95 
 

For MAP@10 we look at the first 10 results suggested for each item instead  

of 3. For lower thresholds there will be suggestions for a greater number of items 

(there will be no items with zero suggestions due to threshold cut-off) , but they are 

of lower quality, i.e., some of them are not relevant. For MAP@3 and low thresholds 

there will still be a lot of suggestions of lower quality, but this time they are cut-off 

by rank 3. This explains why MAP@10 would be less than MAP@3 for lower 

thresholds. 

5.4. Discussion  

Given the difficulty of the problem of assigning a subject to an unstructured body of 

text and, in fact, from a large vocabulary of unique terms, the results of the above 

experiments are considered satisfactory. Despite the scores being relatively not too 

high, exact values are not really critical. The model is able to assign similarity to 

annotations yielded by semantic matching and make its own suggestions with even 

greater certainty. Moreover, the definition of the 0.36 threshold will assist in selecting 

or rejecting suggestions.  

It is also evident that the performance of the model depends greatly on the 

training set. We might have circumvented the dictionary sparsity by including 

thesaurus terms with their descriptions directly from the thesaurus document, but this 

is still just one annotation for each term. Better results could not be achieved by 

simply addressing an even larger dataset; rather, the latter needs to be broad enough 

to cover as many terms as possible and to contain adequate samples for each term. 

This is by no means straightforward, since literature tends to concentrate on limited 

sets of concepts during the years.  

The increase of retrieval effectiveness @1 along with the threshold is an 

intuitively satisfying observation, since it confirms that the model is capable of 

making suggestions with a sensitivity directly depending on the specific threshold. In 
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itself, this fact validates our overall approach and training methodology and suggests 

room for improvement in the characteristics of the training set (size, thesaurus 

coverage, balancing). 

Ranking effectiveness solidifies with greater threshold values, as expected. 

Overall, these results confirm that work proposed in this paper can offer a plausible 

approach for the recommendation ranking problem, as the order of term suggestions 

affects the annotations finally made by the users: they tend to consider more (or even 

solely) results appearing first. 

The inclusion of the thesaurus concept hierarchy in the training process and its 

consideration during evaluation can affect the effectiveness of the system on the 

positive side. For example, we have noticed cases where the system may miss some 

expert recommended terms, but suggests terms that are on the same concept hierarchy 

(skos:broader). Such suggestions are now deemed irrelevant because the thesaurus 

structure is not taken into account and human indexers tend to use only the most 

specific terms. The system may also propose additional terms that are semantically 

relevant, such as siblings, terms belonging in the same hierarchy tree and so on. Still, 

these are not exact matches and this semantic effect is not currently evaluated. 

6. Conclusions and future directions 

Subject classification of OERs is a highly involving task, as it depends on several 

parameters ranging from availability of resources to metadata incompatibilities to 

intended OER use and synthesis. Reusing seed keywords can offer an alternative for 

missing or ad-hoc annotations; subject suggestions are authority controlled and refer 

to formal bodies of domain knowledge. In addition, these suggestions can be assessed 

through a threshold posed by computing similarity between thesaurus terms and OER 

metadata. Not only can the construction of word embeddings for these two validate 

subject annotations but it can also make additional proposals for thematic 

classification.  

Further evaluation involving larger pre-indexed citations corpora indicates that 

our approach for similarity scoring and ranking of subject recommendations is 

reasonable. First, it is shown that the model is indeed capable of learning the semantic 

interpretation of MeSH terms by adjusting their vectors according to the documents 

fed during training. Next, terms with higher similarity tend to be closer to the actual 

subject pertaining to the content of the input document, even if it is unknown and its 

vector is only inferred by the model. Therefore, the selection of the cosine similarity 

measure as a ranking criterion is effective and validated by the relatively high MAP 

values. 

In the near future, we intend to make available system features as a web service, 

so as to facilitate seamless integration with the LOOR as well as interoperability with 

other web-based learning management and research services. To this end, we 

consider a more robust approach for dataset preparation, update and maintenance, 

possibly involving text-oriented and noSQL databases and its coupling with an 

incremental training process. The use of a distributed infrastructure could also help 
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with the increased needs for space and computational power that will be posed by 

such big data requirements.  

There is evidence that the proposed system and methodology is affected by and 

therefore is capable of implicitly learning the semantic relationships among terms in 

the thesaurus, for example, by proposing terms that share common ancestors or are 

otherwise related. These terms have not been considered by indexers possibly 

because they are too far apart in the concept hierarchy or represent research by-

products rather than the core topic of a publication. To the extent that these terms are 

indeed relevant, this fact can open a whole new set of possibilities other than efficient 

indexing, such as to identify potential new research directions and facilitate novel 

results in the field of interest. 

R e f e r e n c e s 

1. E i c h h o r n, S., G. W. M a t k i n. Massive Open Online Courses, Big Data, and Education 

Research. – New Directions for Institutional Research, Vol. 167, 2015, Wiley, 2016,  

pp. 27-40.  

2. M a o, Y., Z. L u. MeSH Now: Automatic MeSH Indexing at PubMed Scale via Learning to Rank. 

– J. Biomed Semantics, Vol. 17, April 2017, 8(1):15. DOI: 10.1186/s13326-017-0123-3. 

3. K o u t s o m i t r o p o u l o s, D. A., G. D. S o l o m o u, A. K. K a l o u. Federated Semantic Search 

Using Terminological Thesauri for Learning Object Discovery. – International Journal of 

Enterprise Information Management, Vol. 30, Emerald, 2017, No 5, pp. 795-808. 

4. K o u t s o m i t r o p o u l o s, D. A., G. D. S o l o m o u. A Learning Object Ontology Repository to 

Support Annotation and Discovery of Educational Resources Using Semantic Thesauri. – 

IFLA Journal SAGE, Vol. 44, 2018, No 1, pp. 4-24. 

5. Europe PMC Consortium. Europe PMC: A Full-Text Literature Database for the Life Sciences and 

Platform for Innovation. – Nucleic Acids Research, Vol. 43, 11 August 2017. Database Issue 

(2015): D1042-D1048. PMC. Web.  

6. M c M a r t i n, F. MERLOT: A Model for User Involvement in Digital Library Design and 

Implementation. – Journal of Digital Information, Vol. 5, 2006, No 3. 

7. U. S. National Library of Medicine. Medical Subject Headings, 2019.  

https://www.nlm.nih.gov/mesh/meshhome.html 

8. K o u t s o m i t r o p o u l o s, D., A. A n d r i o p o u l o s, S. L i k o t h a n a s s i s. Subject 

Classification of Learning Resources Using Word Embeddings and Semantic Thesauri. – In: 

Proc. of IEEE Innovations in Intelligent Systems and Applications 2019 (INISTA’19), Sofia, 

Bulgaria, 3-5 July 2019. 

9. M i k o l o v, T., K. C h e n, G. C o r r a d o, J. D e a n. Efficient Estimation of Word Representations 

in Vector Space. – In: ICLR Workshop, 2013. 

10. L e, Q.,V. T. M i k o l o v. Distributed Representations of Sentences and Documents. – In: Proc. of 

31st International Conference on Machine Learning (ICML’14), 2014. 

11. M a n d e l b a u m, A., A. S h a l e v. Word Embeddings and Their Use in Sentence Classification 

Tasks. – In: CoRR, Cornel University, arxiv.org/abs/160.08229, October 2016. 

12. T u r n e r, C. A., A. D. J a c o b s, C. K. M a r q u e s, J. C. O a t e s, D. L. K a m e n,  

P. E. A n d e r s o n, J. S. O b e i d. Word2Vec Inversion and Traditional Text Classifiers for 

Phenotyping Lupus. – BMC in Medical Informatics and Decision Making, Vol. 17, January 

2017, pp. 126-136. 

13. L i u, Q., H. H u a n g, Y. G a o, X. W e i, Y. T i a n, L. L i u. Task-Oriented Word Embedding for 

Text Classification. COLING, 2018. 

14. S u r a j, S., V. D e e p a l i. Unsupervised Text Classification and Search Using Word Embeddings 

on a Self-Organizing Map. – International Journal of Computer Applications. Vol. 156, 

December 2016, pp. 35-37. DOI: 10.5120/ijca2016912570. 



 113 

15. S t e i n, R. A., P. A. J a q u e s, J. F. V a l i a t i. An Analysis of Hierarchical Text Classification 

Using Word Embeddings. – Information Sciences, Vol. 471, 2019, pp. 216-232. 

16. P e t r o l i t o, R., F. D. O r l e t t a. Word Embeddings in Sentiment Analysis. – In: Proc. of 6th 

Italian Conference on Computational Linguistics (CLiC-it 2018), Vol. 2253, Torino, Italy, 

2018. 

17. P e t r o l i t o, R., F. D. O r l e t t a. Document Retrieval and Question Answering in Medical 

Documents. A Large-Scale Corpus Challenge. – In: Proc. of Biomedical NLP Workshop 

Associated with RANLP, Varna, Bulgaria, September 2017, pp. 1-7. 

18. M e i l i n, Z. Research on Text Classification Method Based on Multi-Type Classifier Fusion. – In: 

Proc. of 8th International Conference on Social Network, Communication and Education 

(SNCE’18), Shenyang, China, Vol. 83, May 2018, pp. 798-805. 

19. W a n g, R., W. L i u, C. M c D o n a l d. Corpus-Independent Generic Keyphrase Extraction Using 

Word Embedding Vectors. – In: Proc. of Software Engineering Research Conference, Vol. 39, 

2014. 

20. W a n g, R., W. L i u, C. M c D o n a l d. Using Word Embeddings to Enhance Keyword 

Identification for Scientific Publications. – In: Proc. of 26th Australasian Database Conference, 

ADC’2015, Melbourne, Australia. Springer, June 2015, pp. 257-268. 

21. M a h a t a, D., J. K u r i a k o s e, R. R. S h a h, R. Z i m m e r m a n n, J. R. T a l b u r t. Theme-

Weighted Ranking of Keywords from Text Documents Using Phrase Embeddings. – In: Proc. 

of IEEE Conference on Multimedia Information Processing and Retrieval (MIPR’18), Miami, 

USA, April 2018, pp. 184-189. 

22. C h e n, S., A. S o n i, A. P a p p u, Y. M e h d a d. DocTag2Vec: An Embedding Based Multi-Label 

Learning Approach for Document Tagging. – In: Proc. of 2nd Workshop on Representation 

Learning for NLP, Vancouver, Canada, August 2017, pp. 111-120. 

23. P e t e r s, M. E., M. N e u m a n n, M. I y y e r, M. G a r d n e r, C. C l a r k, K. L e e,  

L. Z e t t l e m o y e r. Deep Contextualized Word Representations. arXiv:1802.05365v2 

[cs.CL], NAACL, March 2018. 

24. S h e i k h s h a b b a f g h i, G., I. B i r o l, A. S a r k a r. In-Domain Context-Aware Token 

Embeddings Improve Biomedical Named Entity Recognition. – In: Proc. of 9th International 

Workshop on Health Text Mining and Information Analysis (LOUHI’18), Brussels, Belgium, 

October 2018, pp. 160-164. DOI: 10.18653/v1/W18-5618. 

25. M a r t í n e z-R o m e r o, M., C. J o n q u e t, M. J. O ’ C o n n o r, J. G r a y b e a l, A. P a z o s,  

M. A. M u s e n. NCBO Ontology Recommender 2.0: An Enhanced Approach for Biomedical 

Ontology Recommendation. – Journal of Biomedical Semantics, Vol. 8, 2017, No 1, Article 

No 21. DOI:10.1186/s13326-017-0128-y. 

26. P e n g, S., R. Y o u, H. W a n g, C. Z h a i, H. M a m i t s u k a, S. Z h u. DeepMeSH: Deep Semantic 

Representation for Improving Large-Scale MeSH Indexing. – Bioinformatics, 15;32, June 

2016, Article No 12, pp. i70-i79. DOI: 10.1093/bioinformatics/btw294. 

27. K o s m o p o u l o s, A., I. A n d r o u t s o p o u l o s, G. P a l i o u r a s. Biomedical Semantic 

Indexing Using Dense Word Vectors in BioASQ. – J. BioMed Semant Suppl BioMedl Inf Retr, 

2015. 

28. A b d e d d a ï m, S., S. V i m a r d, L. F. S o u a l m i a. The MeSH-Gram Neural Network Model: 

Extending Word Embedding Vectors with MeSH Concepts for UMLS Semantic Similarity and 

Relatedness in the Biomedical Domain. arXiv:1812.02309v1 [cs.CL], November 2018. 

29. S e g u r a, B., P. M a r t í n e z, M. A. C a r r u a n. Search and Graph Database Technologies for 

Biomedical Semantic Indexing: Experimental Analysis. – JMIR Med Inform. 1;5, December 

2017, (4): e48. DOI: 10.2196/medinform.7059. 

30. T e r n i e r, S., K. V e r b e r t, G. P a r r a, B. V a n d e p u t t e, J. K l e r k x, E. D u v a l et al. The 

Ariadne Infrastructure for Managing and Storing Metadata. – IEEE Internet Computing,  

Vol. 13, 2009, No 4. 

31. A. Miles, S. Bechhofer, Eds. SKOS Simple Knowledge Organization System Reference. W3C 

Recommendation, 2009.  

http://www.w3.org/TR/skos-reference 

32. S c h n a b e l, T., I. L a b u t o v, D. M. M i m n o, T. J o a c h i m s. Evaluation Methods for 

Unsupervised Word Embeddings. – In: Proc. of Conference on Empirical Methods in Natural 

Language Processing (EMNLP’15), Lisbon, Portugal, September 2015, pp. 298-307. 



 114 

33. A s s e m, V. M., V. M a l a i s é, A. M i l e s, G. S c h r e i b e r. A Method to Convert Thesauri to 

SKOS. – In: Proc. of 3rd European Semantic Web Conference of the Semantic Web, Research 

and Applications, ESWC’2006, Budva, Montenegro, 11-14 June 2006, Vol. 4011, Springer, 

2006, p. 95.  

34. U.S. Department of Health & Human Services, MEDLINE®PubMed® XML Element Descriptions 

and their Attributes, 2018.  

https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html 

35. Z h a n g, E., Y. Z h a n g. Average Precision. – In: L. Liu, M. T. Özsu, Eds. Encyclopedia of 

Database Systems. Springer, Boston, 2009, MA. 

Appendix  

Table A1. Mean precision at different ranks and threshold values 

Rank Sim 

Precision 

Number of items with 

terms above threshold 

Number of items with 

terms below threshold 

Number of 

annotations 

Number of 

annotations that are 

relevant 

Value 

1 0.36 13,470 0 41,374 4038 0.300 

1 0.4 13,452 18 41,315 4048 0.301 

1 0.44 13,189 281 40,471 4009 0.304 

1 0.48 11,887 1583 36,339 3849 0.324 

1 0.52 8923 4547 26,968 3140 0.352 

1 0.56 5262 8208 15,507 2090 0.397 

1 0.6 2379 11,091 6704 1094 0.460 

1 0.64 882 12,588 2410 424 0.481 

1 0.68 281 13,189 702 147 0.523 

1 0.72 70 13,400 174 42 0.600 

1 0.76 8 13,462 18 6 0.750 

3 0.36 13,470 0 41,374 7832 0.194 

3 0.4 13,442 28 41,286 7812 0.194 

3 0.44 13,167 303 40,406 7681 0.194 

3 0.48 11,880 1590 36,320 6651 0.187 

3 0.52 8924 4546 26,965 4658 0.174 

3 0.56 5219 8251 15,378 2676 0.171 

3 0.6 2411 11,059 6737 1245 0.172 

3 0.64 877 12,593 2340 446 0.170 

3 0.68 269 13,201 672 135 0.167 

3 0.72 69 13,401 173 40 0.193 

3 0.76 6 13,464 17 6 0.333 

10 0.36 13,469 1 41,370 13,528 0.100 

10 0.4 13,445 25 41,307 13,255 0.099 

10 0.44 13,187 283 40,477 11,721 0.089 

10 0.48 11,895 1575 36,421 8525 0.072 

10 0.52 8889 4581 26,824 5142 0.058 

10 0.56 5230 8240 15,368 2785 0.053 

10 0.6 2374 11,096 6654 1233 0.052 

10 0.64 863 12,607 2313 439 0.051 

10 0.68 279 13,191 713 149 0.053 

10 0.72 69 13,401 162 38 0.055 

10 0.76 6 13,464 10 5 0.083 
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Table A2. Mean recall at different ranks and threshold values 

Rank Sim 

Recall 

Number of items with 

terms above threshold 

Number of items with 

terms below threshold 

Number of 

annotations 

Number of 

annotations that are 

relevant 

Value 

1 0.36 13,470 0 41,374 4038 0.118 

1 0.4 13,452 18 41,315 4050 0.120 

1 0.44 13,191 279 40,479 4008 0.119 

1 0.48 11,888 1582 36,328 3859 0.129 

1 0.52 8919 4551 26,954 3135 0.142 

1 0.56 5255 8215 15,494 2093 0.166 

1 0.6 2378 11,092 6699 1096 0.206 

1 0.64 888 12,582 2429 428 0.228 

1 0.68 283 13,187 707 149 0.270 

1 0.72 69 13,401 171 42 0.334 

1 0.76 8 13,462 18 6 0.510 

3 0.36 13,470 0 41,374 7835 0.219 

3 0.4 13,442 28 41,286 7816 0.219 

3 0.44 13,166 304 40,407 7676 0.221 

3 0.48 11,881 1589 36,326 6664 0.213 

3 0.52 8924 4546 26,993 4655 0.206 

3 0.56 5222 8248 15,381 2675 0.212 

3 0.6 2403 11,067 6718 1239 0.226 

3 0.64 880 12,590 2347 449 0.240 

3 0.68 269 13,201 672 135 0.253 

3 0.72 69 13,401 173 40 0.305 

3 0.76 6 13,464 17 6 0.464 

10 0.36 13,469 1 41,370 13,527 0.361 

10 0.4 13,446 24 41,309 13,248 0.355 

10 0.44 13,188 282 40,481 11,726 0.325 

10 0.48 11,902 1568 36,455 8522 0.267 

10 0.52 8892 4578 26,831 5140 0.227 

10 0.56 5230 8240 15,366 2786 0.220 

10 0.6 2374 11,096 6647 1236 0.230 

10 0.64 868 12,602 2323 439 0.244 

10 0.68 279 13,191 712 150 0.269 

10 0.72 68 13,402 160 38 0.300 

10 0.76 6 13,464 10 5 0.556 
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Table A3. MAP at different ranks and threshold values 

Rank Sim 

Ranking 

Number of items 

with terms above 

threshold 

Number of items 

with terms 

below threshold 

Number of 

items with 

relevant terms 

Number of 

annotations 

Number of 

annotations that 

are relevant 

Value 

3 0.36 13,470 0 6863 40,407 7857 0.763 

3 0.4 13,452 18 6814 40,158 7838 0.767 

3 0.44 13,191 279 6649 37,944 7637 0.771 

3 0.48 11,891 1579 5872 30,089 6659 0.804 

3 0.52 8916 4554 4285 18,275 4754 0.851 

3 0.56 5252 8218 2503 8570 2664 0.911 

3 0.6 2380 11,090 1206 3259 1245 0.952 

3 0.64 886 12,584 449 1079 457 0.972 

3 0.68 283 13,187 151 299 152 0.987 

3 0.72 70 13,400 43 72 43 0.988 

3 0.76 8 13,462 6 8 6 1.000 

10 0.36 13,470 0 9579 134,327 13,583 0.558 

10 0.4 13,442 28 9424 128,277 13,280 0.566 

10 0.44 13,165 305 8624 100,062 11,715 0.612 

10 0.48 13,470 1589 6800 56,405 8567 0.703 

10 0.52 8924 4546 4495 25,261 5163 0.807 

10 0.56 5224 8246 2563 9974 2765 0.898 

10 0.6 2403 11,067 1208 3507 1251 0.947 

10 0.64 879 12,591 444 1079 450 0.974 

10 0.68 270 13,200 134 294 135 0.985 

10 0.72 70 13,400 40 73 40 0.988 

10 0.76 6 13,464 6 6 6 1.000 

 

Table A4. Mean R-precision at different ranks and threshold values 

Sim 

R-Precision 

Number of items with 

terms above threshold 

Number of items with 

terms below threshold 

Number of 

annotations 

Number of annotations 

that are relevant 
Value 

0.36 13,470 0 41,374 8192 0.205 

0.4 13,452 18 41,315 8192 0.207 

0.44 13,191 279 40,475 7861 0.202 

0.48 11,888 1582 36,331 6664 0.198 

0.52 8923 4547 26,973 4622 0.192 

0.56 5259 8211 15,504 2603 0.196 

0.6 2375 11,095 6686 1226 0.225 

0.64 890 12,580 2429 454 0.239 

0.68 281 13,189 702 151 0.275 

0.72 69 13,401 171 43 0.338 

0.76 8 13,462 18 6 0.510 
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