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Abstract: In this work we address the problem of optimizing collective profitability 

in semi-competitive intermediation networks defined as augmented directed acyclic 

graphs. Network participants are modeled as autonomous agents endowed with 

private utility functions. We introduce a mathematical optimization model for 

defining pricing strategies of network participants. We employ welfare economics 

aiming to maximize the Nash social welfare of the intermediation network. The paper 

contains mathematical results that theoretically prove the existence of such optimal 

strategies. We also discuss computational results that we obtained using a nonlinear 

convex numerical optimization package.  

Keywords: Social welfare, Intermediation, Profitability, Nonlinear convex 

optimization, Directed acyclic graph. 

1. Introduction 

Current developments in Computing and Information Technology support the 

practical application of graph and network models in many areas of science and 

engineering, including the emergent fields of e-Commerce and e-Business. 

Researchers in Economics and Computer Science are interested to understand how 

intermediation networks conceptually emerge and technically develop. Economists 

are focused on intermediation in decentralized trading markets comprising 

autonomous business agents. Meeting, interaction and trading of buyers and seller is 

now facilitated either through direct contact, or via intermediation agents, with 

reduced cost and increased gain. Computer Scientists have developed digital 

decentralized markets where business partners assisted by software agents can 

register their capabilities, search for potential partners, and involve in trading 

activities [6, 13]. 
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Current practices in the management of supply and distribution activities 

assume the engagement of business agents in inter-related and concurrently operating 

supply and distribution channels. In our recent research work we are interested in the 

modelling and analysis of such complex business processes as semi-competitive 

intermediation networks. Our results on this subject are presented in papers [4, 5] and 

synthesis paper [12] and refer to the following aspects of the problem: i) the 

introduction of a domain-independent process model, grounded on Directed Acyclic 

Graphs (DAG hereafter), and ii) the development of necessary and sufficient 

conditions that guarantee profitable pricing strategies of involved actors in the 

intermediation process.  

Observe that most of existing research in intermediation processes is developed 

in a competitive environment. However, we have noticed that actually intermediation 

networks are serving supply and distribution chains operating in semi-competitive, 

rather than competitive environment. This means that while participating agents are 

collaborating so that the underlying business process is supporting the service of its 

external customers, the agents are also self-interested with the goal to maximize both 

their immediate private revenue, as well as their longer-term welfare [12]. 

Our proposed model is relevant for both single and multiple company settings. 

It covers also B2B models of industrial consortia and private industrial networks that 

perform network-based B2B e-Commerce in privately, as well as collectively own 

“extended enterprises”. Such complex organizations include carefully selected 

multiple independent business participants committed to tightly coordinate 

efficiently and collaborate for supporting industry-wide goals, quite often serving a 

single and very large manufacturer [14]. 

All participants in the intermediation business process define an “agent society”. 

Social choice theory postulates that social choice is governed by a social welfare 

function mapping tuples of “individually preferred” outcomes of the participants to 

the “socially preferred” outcome. Four rationality axioms that must be satisfied by an 

acceptable social welfare function are proposed based on common-sense principles. 

This enabled the proof that there is a unique mathematical function that satisfies these 

axioms, known as the Nash social welfare function [9]. 

Let us assume that participants’ choices are determined by transaction prices 

such that their social welfare can be quantitatively evaluated as Nash social welfare 

index. Our most important result is the introduction of optimal pricing strategies of 

transaction participants as nonlinear convex optimization problem [7]. We obtain 

theoretical results regarding the existence of such optimal pricing strategies in semi-

competitive intermediation networks. Our results are also supported by experimental 

evidence. 

2. Intermediation networks 

We start by reviewing our definition of collectively profitable intermediation 

processes [12]. Central to this definition is the concept of intermediation DAG. We 

consider a simplified form of this definition, by discarding DAG annotations of 

exchanged products, as they are not relevant for the results reported in this paper. 
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Definition 1. Intermediation DAG. Let us consider three finite, nonempty and 

pairwise disjoint sets ‒ 𝒮, ℬ, and ℐ be of sellers, buyers and intermediaries. An   

intermediation DAG is represented by the triple 𝒢 = 〈𝒱,𝒜, 𝑝〉 such that: 

1. The set of vertices is defined by 𝑉 = 𝒮 ∪ ℬ ∪ ℐ. 

2. The sets of incoming arcs to 𝒮 and outgoing arcs from ℬ are empty. 

3. 𝑝 ∶ 𝒮 ∪ ℬ ∪ 𝒜 → [0,+∞) is a function that annotates the elements of 𝐺 with 

pricing information, as follows. 

a. If 𝑠 ∈ 𝒮 then 𝑝(𝑠) = 𝜎𝑠 > 0. Here 𝛔 denotes the vector of seller limit 

prices. 

b. If 𝑏 ∈ ℬ then 𝑝(𝑏) = 𝛽𝑏 > 0. Here 𝛃 denotes the vector of buyer limit 

prices. 

c. If 𝑡 = (𝑢, 𝑣) ∈ 𝒜 denotes a transaction then 𝑝(𝑡) = 𝑝𝑢,𝑣 > 0 is the 

transaction price for which seller agent 𝑢 agrees to sell its products to buyer agent 𝑣. 

Limit prices are explained in what follows. Each participant agent (with seller, 

buyer or intermediation role) that is part of an intermediation transaction is selling 

and/or buying a given set of products. Their strategies are governed by suitable 

chosen and pre-defined limit prices. Let us denote with 𝜎𝑠 the limit price of seller 𝑠. 

So agent 𝑠 agrees to sell its products only at price 𝑝 ≥ 𝜎𝑆. Similarly, let us denote 

with 𝛽𝑏 the limit price of buyer 𝑏. So agent 𝑏 agrees to purchase its set of products 

only at price 𝑝 ≤ 𝛽𝑏. 

Let us consider the example intermediation DAG shown in Fig. 1. Observe that: 

𝒮 = {1, 2}, ℬ = {5, 7, 8}, 𝑝(1) = 𝜎1, 𝑝(5) = 𝛽5, and 𝑝((3, 6)) = 𝑝3,6. 

Let us define functions “in” and “out”:  

(1) in ∶ 𝒱 →  2𝒱,  in(𝑣) =  {𝑢 | (𝑢, 𝑣) ∈ 𝒜},  
out ∶ 𝒱 → 2𝒱 , out(𝑣) = {𝑢 | (𝑣, 𝑢) ∈ 𝒜}. 

 

 
Fig. 1. Sample DAG-based intermediation process 

 

We can now define the utility 𝑢𝑣 = 𝑢(𝑣) of each agent node 𝑣 ∈ 𝒱:  

the utility of seller agent 𝑠 ∈ 𝒮 is  

(2) 𝑢(𝑠) = −𝜎𝑠 + ∑ 𝑝𝑠,𝑣𝑣∈out(𝑠) ; 

the utility of buyer agent 𝑏 ∈ ℬ is  

(3) 𝑢(𝑏) = 𝛽𝑏 − ∑ 𝑝𝑣,𝑏𝑣∈in(𝑏) ; 

the utility of intermediation agent 𝑖 ∈ ℐ is  

(4) 𝑢(𝑖) = ∑ 𝑝𝑖,𝑣𝑣∈out(𝑖) − ∑ 𝑝𝑣,𝑖𝑣∈in(𝑖) . 
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Participant agent 𝑣 ∈ 𝒱 is called profitable if and only if the outcome of its 

transaction is a positive utility, i.e., 𝑢(𝑣) ≥ 0.  

Definition 2. Collective profitability. An intermediation DAG 𝒢 is called 

collectively profitable if and only if there exist positive transaction prices 𝑝 that 

annotate 𝒢 in such a way that for each agent 𝑣 captured by a vertex of 𝒢 we have 

𝑢(𝑣) ≥ 0.  

Our preliminary results include a set of necessary and sufficient collective 

profitability conditions that must be satisfied by the vectors of limit prices 𝛔 and 𝛃 

[12]. Here, we assume that these conditions hold, i.e., our DAG is collectively 

profitable, and we focus on studying the maximization of social welfare as 

mathematical optimization problem. 

3. Optimal social welfare 

Let 𝒢 = 〈𝒱,𝒜, 𝑝〉 be a collectively profitable intermediation DAG. This means that 

𝑢𝑣 = 𝑢(𝑣) ≥ 0 for each participant agent 𝑣 ∈ 𝒱. Let 𝑛 ≥ 1 be the total number of 

participants (i.e., the cardinal of finite set 𝒮) and 𝑒 ≥ 1 be the total number of 

transactions (i.e., the cardinal of finite set 𝒜). Hence, we can number participants 

with 1, 2, … , 𝑛 and transactions (in lexicographical order) with 1, 2, … , 𝑒. 

The Nash social welfare function for the society of participant agents defined 

by intermediation graph 𝒢 by:  

(5) 𝑈(𝐩) = ∑ log𝑢𝑖
𝑛
𝑖=1 . 

Observe that if graph 𝒢 is collectively profitable then 𝑈 is well defined by (5), 

as logarithm is defined for positive real numbers and utilities 𝑢𝑖 are positive for all 

𝑖 = 1, 2, … , 𝑛 (assuming that log 0 = −∞). Let 𝐛 ∈ ℝ𝑛×1 be the vector of signed 

limit prices, defined by:  

(6) 𝑏𝑖 = {
−𝜎𝑖 𝑖 ∈ 𝒮,
𝛽𝑖 𝑖 ∈ ℬ,
0 𝑖 ∈ ℐ.

 

We denote with 𝐷 ∈ ℝ𝑛×𝑒 the incidence matrix [1] of 𝐺, defined by: 

(7) 𝐷𝑖,𝑗 = {
1      if the head of arc 𝑗 is node 𝑖 ,

−1    if the tail of arc 𝑗 is node 𝑖,  
0      otherwise.                                 

 

Vector 𝐮 representing the utilities of participant agents can be defined by: 

(8) 𝐮 = 𝐷 ⋅ 𝐩 + 𝐛. 

Collective profitability condition 𝐮 ≽ 0 can be combined with positivity 

condition of transaction prices 𝐩 ≽ 0 thus producing the next equation. Note that the 

next equation completely defines the domain of definition of the social welfare 

function 𝑈: 

(9) 
−𝐷 ⋅ 𝐩 ≼ 𝐛,

−𝐩 ≼ 0.
  

According to standard reference [11], a nonempty intersection of half-spaces 

defines a set called polyhedron. Moreover, a bounded polyhedron is also known as 

polytope. 
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Proposition 1. The domain of definition of social welfare function 𝑈 defined 

by (9) is a polytope. 

P r o o f: Observe that (9) represents a finite intersection of half-spaces, thus 

defining a polyhedron. Moreover, we can use the positivity conditions of 𝐩 to 

construct a lower bound. Moving up in the intermediation DAG, starting from its 

bottom layer denoting buyers (see example from Fig. 1), a set of upper bounds, one 

for each transaction price, can be recursively defined. Thus, we obtain that the domain 

of definition of social welfare function 𝑈 is in fact a bounded polyhedron, i.e., a 

polytope.                                                                        □ 

Let us now focus on studying the convexity of function 𝑈. We first compute the 

first and second order derivatives of 𝑈, as follows: 

(10) 
𝜕𝑈

𝜕𝑝𝑖,𝑗
=

1

𝑢𝑖
 –

1

𝑢𝑗
, 

𝜕2 𝑈

𝜕𝑝𝑖,𝑗
2 = −(

1

𝑢𝑖
2  +

1

𝑢𝑗
2), 

𝜕2𝑈

𝜕𝑝𝑖,𝑗𝜕𝑝𝑖,𝑘

=
𝜕2𝑈

𝜕𝑝𝑗,𝑖𝜕𝑝𝑘,𝑖

= −
1

𝑢𝑖
2 , 

𝜕2𝑈

𝜕𝑝𝑖,𝑗𝜕𝑝𝑗,𝑘
=

𝜕2𝑈

𝜕𝑝𝑗,𝑘𝜕𝑝𝑖,𝑗
=

1

𝑢𝑗
2. 

Analysing (10) we observe that the Jacobian and Hessian matrices of 𝑈 are  
1 × 𝑒 and, respectively, 𝑒 × 𝑒 matrices and they can be defined by: 

(11) 𝐽𝑈(𝐩) = [
1

𝐮
]
T
𝐷, 

𝐻𝑈(𝐩) = 𝐷Tdiag ([−
1

𝐮2])𝐷. 

The Hessian matrix 𝐻𝑈 is used for checking that the social welfare function 𝑈 

is concave, while both Hessian and Jacobian matrices 𝐻𝑈 and 𝐽𝑈 are also used to 

implement the nonlinear convex optimization problem. 

Proposition 2. Concavity of social welfare function. The Nash social welfare 

function of a collectively profitable DAG 𝒢 defined by (5) on the domain defined by 

(9) is a concave function. 

P r o o f: The proof utilizes an adaptation of Sylvester’s criterion for semi-

definite positive or negative matrices. Basically, in our case we must prove that the 

Hessian matrix 𝐻𝑈(𝐩), is negative semi-definite. This result is obtained by checking 

that all its principal minors of order 𝑘 have sign (−1)𝑘. According to [10], this 

condition entails that function 𝑈 is concave. 

Let Δ𝑖1,𝑖2,…,𝑖𝑘 be a principal minor of the Hessian matrix 𝐻𝑈(𝐩) such that  

1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑒 denote 𝑘 arbitrary arcs of 𝒢. Let 𝒢′ be the undirected sub-

graph of 𝒢 induced by the subset {𝑖1,  𝑖2, … , 𝑖𝑘} of arcs and then by discarding its arc 

orientations. We denote the set of vertices of 𝒢′ with 𝑉′. 

In the case that 𝒢′ does contain cycles we can easily observe that Δ𝑖1,𝑖2,…,𝑖𝑘 = 0. 

Let us consider a cycle together with its orientation. This induces the orientation to 

each of its component arcs. Now if we determine the algebraic sum of the Hessian 

columns that correspond to all the arcs of the cycle, taking signs according to the arc 

orientation relative to the cycle orientation, we obviously obtain zero.  Note that the 
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Hessian columns correspond exactly to the arcs of the cycle, so pairs of terms of this 

sum will cancel each other, thus producing the result zero.  

In the case that 𝒢′ does not contain cycles we consider the connected 

components 𝒢𝑗
′ of 𝒢 ′, 1 ≤ 𝑗 ≤ 𝑝, such that 𝒢𝑗

′ contains 𝑘𝑗 arcs, ∑ 𝑘𝑗
𝑝
𝑗=1 =  𝑘, and 𝒢𝑗

′ 

has vertices 𝑉𝑗
′. Then, minor Δ𝑖1,𝑖2,…,𝑖𝑘 is defined by the next equation:  

(12) Δ𝑖1,𝑖2,…,𝑖𝑘 = (−1)𝑘  ∏ ∑ ∏
1

𝑢𝑖
2𝑖∈𝑆𝑗𝑆𝑗⊆𝑉𝑗

′,|𝑆𝑗|=𝑘𝑗
 

𝑝
𝑗=1  . 

Equation (12) clearly shows that (−1)𝑘Δ𝑖1,𝑖2,…,𝑖𝑘 > 0.               □ 

Theorem 1. Existence and uniqueness of optimal pricing strategy. For each 

collectively profitable DAG 𝒢 there exists a unique optimal pricing strategy that 

participant agents can collectively apply to maximize the Nash social welfare of 𝒢. 

P r o o f: Following Proposition 2 we can conclude that social welfare function 

𝑈 of 𝒢 is concave. According to Proposition 1, 𝑈 is well defined on a polytope 

domain. Moreover, each polytope is a bounded convex set, so 𝑈 is in fact a concave 

function defined on a bounded convex set. We can conclude now that 𝑈 has a local 

maximum that is also a global maximum. This proves the existence and uniqueness 

of an optimal pricing strategy that participant agents can collectively apply to 

maximize their Nash social welfare.                             □ 

4. Case study 

In this section we consider the detailed example of the sample intermediation graph 

presented in Fig. 1. For this example we are going to present its associated matrices, 

vectors, as well as the explanation of the proof of Proposition 2. 

Matrices 𝐛 and 𝐷 for the sample intermediation DAG 𝒢 shown in Fig. 1 are 

introduced by equations (13) and (14). Note that in this case there are 𝑛 = 8 vertices, 

i.e., participant agents, as well as 𝑒 = 8 arcs, i.e., transactions. 

(13) 𝐛 =

[
 
 
 
 
 
 
 
−𝜎1

−𝜎2

0
0
𝛽5

0
𝛽7

𝛽8 ]
 
 
 
 
 
 
 

, 

(14) 𝐷 =

[
 
 
 
 
 
 
 

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0

−1 0 0 0 1 0 0 0
0 −1 −1 0 0 1 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 −1 1 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1]

 
 
 
 
 
 
 

. 

Each column of the incidence matrix 𝐷 represents a unique arc of 𝒢. For 

example, arcs 1, 3, and 4 corresponding to columns 1, 3, and 4 of 𝐷 are as follows: 

(1, 3), (2, 4), and (2, 5).  

Moreover, Jacobian and Hessian matrices of the sample intermediation DAG 

shown in Fig. 1 are given by (15) and (16). 
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(15) 𝐽𝑈(𝐩) = [
1

𝑢1
−

1

𝑢3

1

𝑢1
−

1

𝑢4

1

𝑢2
−

1

𝑢4

1

𝑢2
−

1

𝑢5

1

𝑢3
−

1

𝑢6

1

𝑢4
−

1

𝑢6

1

𝑢6
−

1

𝑢7

1

𝑢6
−

1

𝑢8
], 

(16) 𝐻𝑈(𝐩) = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 −

1

𝑢1
2 −

1

𝑢3
2 −

1

𝑢1
2 0 0

1

𝑢3
2 0 0 0

−
1

𝑢1
2 −

1

𝑢1
2 −

1

𝑢4
2 −

1

𝑢4
2 0 0

1

𝑢4
2 0 0

0 −
1

𝑢4
2 −

1

𝑢2
2 −

1

𝑢4
2 −

1

𝑢2
2 0

1

𝑢4
2 0 0

0 0 −
1

𝑢2
2 −

1

𝑢2
2 −

1

𝑢5
2 0 0 0 0

1

𝑢3
2 0 0 0 −

1

𝑢3
2 −

1

𝑢6
2 −

1

𝑢6
2

1

𝑢6
2 0

0
1

𝑢4
2

1

𝑢4
2 0 −

1

𝑢6
2 −

1

𝑢4
2 −

1

𝑢6
2

1

𝑢6
2 0

0 0 0 0
1

𝑢6
2

1

𝑢6
2 −

1

𝑢6
2 −

1

𝑢7
2

1

𝑢7
2

0 0 0 0 0 0
1

𝑢7
2 −

1

𝑢7
2 −

1

𝑢8
2]
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Let us now consider the following cycle of 𝒢: (1, 3), (3, 6), (6, 4), (4, 1). 

Representing arcs by their indices and assigning one of signs + and − to each arc 

following its orientation relative to the cycle orientation, we get the cycle:  
1, 5, −6, −2. Now it should be rather easy to verify that adding columns 1 and 5 

and then subtracting columns 2 and 6 of matrix 𝐻𝑈, zero is obtained, i.e.,  
Δ1,5,6,2 = 0. 

Let us now consider the minor Δ1,3,4 corresponding to a sub-graph of 𝒢 that does 

not contain cycles. In this case our sub-graph 𝒢 ′ has 5 vertices {1, 2, 3, 4, 5} and  
𝑝 = 2 connected components (for the meaning of 𝑝 please refer to (12)). Moreover, 

as there are 3 arcs we have 𝑘 = 3. Connected components of sub-graph 𝒢′ are defined 

by subsets of vertices {1, 3} and {2, 4, 5} so in this case 𝑘1 = 1 and 𝑘2 = 2. So Δ1,3,4 

is defined by  

(17) Δ1,3,4 = −(
1

𝑢1
2 +

1

𝑢3
2) ⋅ (

1

𝑢2
2⋅𝑢4

2 +
1

𝑢2
2⋅𝑢5

2 +
1

𝑢4
2⋅𝑢5

2),  

and obviously (−1)3 ⋅ Δ1,3,4 > 0. 

5. Computational experiments 

5.1. Experimental setup 

In this section we present the computational experiments that we performed for 

assessing the correctness and feasibility of our proposed approach. There are many 

optimization packages, including more general and powerful frameworks, as well as 

specialized language-specific libraries with customized APIs.  

In this work we have employed the CVXOPT software package for convex 

optimization [3]. The software prototype was implemented using the 64-bit (AMD64) 

version of Python 3.7.3 on an ×64-based PC with a 2 cores / 4 threads Intel© CoreTM 

i7-5500U CPU at 2.40 GHz and running Windows 10.   

Firstly we mapped our problem to the general framework of nonlinear convex 

optimization required by CVXOPT package. For this purpose we define two matrices 

𝐺 of size (𝑒 + 𝑛) × 𝑒 and 𝐡 of size (𝑛 + 𝑒) × 1 using the equations: 

 



 88 

(18) 𝐺 = [
−𝐷
−𝐼𝑒

], 

 𝐡 = [
𝐛
0
]. 

Our optimization problem, captured as nonlinear convex optimization problem 

suitable for CVXOPT implementation, can be represented using  

(19) minimize      − 𝑈(𝐩) = −∑ log(𝐷 ⋅ 𝐩 + 𝐛)𝑖
𝑛
𝑖=1 ,   

 subject to      𝐺 ⋅ 𝐩 ≼ 𝐡. 
Our implementation using CVXOPT was based on the cvxopt.solvers.cp solver. 

In the implementation process we have followed the sequence of steps [3]: 

1. Define a Python function, let us call it U, to evaluate the optimization 

objective, as well as to check the optimization constraints. 

2. Implement Python function U using the definitions of the Jacobian and 

Hessian matrices of the objective function, according to (11). Their implementation 

has been done using the CVXOPT-specific data type cvxopt.matrix. 

3. Define a point x0 inside the domain of the objective function that is used by 

function U. This point has bencomputed before calling the solver, following the 

details shown below. 

4. Prepare a collection of data sets representing problem instances. Each data 

set captures a single problem instance corresponding to a specific intermediation 

DAG and its associated parameters (limit prices). More details regarding the data sets 

are given below. 

5. Define a main Python script to describe the whole experiment. This script 

loads the data sets, configures the CVXOPT solver with suitable parameters, calls the 

solver function cvxopt.solvers.cp, and then obtains the solution representing the 

optimization outcome. 

We experimentally analysed two possible and distinct options to compute the 

required point inside the polytope domain: 

1. Map the polytope half-space representation (as given by (9)) to the equivalent 

vertex representation [11], and then determine the point by sampling the polytope 

interior with a uniform probability distribution. 

2. Directly determine the point using the given half-space representation (9). 

For that purpose we have used the Chebyshev center of the polytope that represents 

the deepest point inside the polytope [7]. 

We experimentally have tested both approaches on sample polytopes, 

employing the PYPOMAN software package for polyhedral manipulations [8]. Our 

conclusion has revealed that the first approach is not usable. This is caused by the 

excessively large running time of the vertex computation, most probably because the 

resulting equivalent polytopes could generally have a too large number of vertices. 

For example, for one example intermediation DAG comprising 15 vertices and 35 

arcs (i.e., 35 dimensions of the polytope representation), the resulting vertex 

representation of this polytope had 58,795 vertices.  

Based on these conclusions, we have chosen the second method to complete our 

experimental workflow. Nevertheless, it was useful to implement two different 

methods for generating points inside the polytope, at least for smaller problem sizes, 
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to be able to analyse the method convergence for distinct initial points inside the 

polytope. 

5.2. Data sets 

We generated an artificial data set comprising many random DAGs of different sizes, 

capturing different intermediation networks. The generating process was 

parameterized as follows: 

1. The number 𝑛 of graph vertices, defined as an element of the following set 

of possible values: {5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50}. 
2. The density factor f of the DAG. The higher is the value of the density factor 

the more arcs our graph contains. Value of f is given as the percentage of the number 

of arcs, from the total possible number of arcs of the DAG, i.e., 
𝑛⋅(𝑛−1)

2
, defined as an 

element of the set {10, 20, 30, 40, 50, 60, 70, 80, 90}. 
3. Number ng of DAGs for each pair of values n and f. In our experiments we 

have set ng = 10. 

Using these values, we obtained a total number of 11 ⋅ 9 ⋅ 10 = 990 DAGs in 

our generated data set. For the representation of each DAG we have used its 

adjacency matrix 𝐴 defined according to (20). Then we converted it into the incidence 

matrix representation 𝐷, that was used for the optimization goal: 

(20) 𝐴𝑖,𝑗 = {
1       if there exists an arc from 𝑖 to 𝑗,
0      otherwise.                                       

 

For each DAG we stored its adjacency matrix into a separate text file. The name 

of this file was defined to easily identify the parameters of the generating process. 

For example, the 5th DAG consisting of 15 vertices and 40% density factor was 

stored into a text file named graf-15-40-5.txt.  

We close this section with two remarks regarding the process of randomly 

generating DAGs to meet the goals of our experiments: 

1. The standard generation of random graphs according to a pre-defined density 

factor is not enough. The generation process had to ensure that the resulting directed 

graph is in fact a proper DAG. This desideration was achieved by constraining the 

generating process to always produce adjacency matrices in upper triangular form. 

This condition assures that the output directed graph is a DAG. Conversely, this 

process is not restricting the generated DAGs. The adjacency matrix representation 

of any possible DAG can be mapped to upper triangular format by performing a 

renumbering the graph vertices according to one of the topological orderings of the 

graph. 

2. In the generating process we have discarded as being not relevant all the 

DAGs that contain “singular” nodes, without incoming and outgoing arcs, as these 

graphs were deemed unsatisfactory to capture intermediation DAGs. 

Last but not least, we chose appropriate values for the limit prices of the buyers 

and sellers. According to our theoretical results from [12], a necessary condition to 

guarantee collective profitability of an intermediation DAG is  

(21) ∑ 𝛽𝑏𝑏∈ℬ ≥ ∑ 𝜎𝑠𝑠∈𝒮 . 
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Let  𝑛𝑏 = |ℬ| and 𝑛𝑠 = |𝒮| denote the number of buyers and sellers. We chose 

𝛔 and 𝛃 according to  

(22) 
𝜎𝑠 = 𝛔 = 100                    for all 𝑠 ∈ 𝒮,

𝛽𝑏 = 𝛃 = 𝛔 ⋅ (⌈
𝑛𝑏

𝑛𝑠
⌉ + 1) for all 𝑏 ∈ ℬ.

 

Observe that this choice guarantees that condition (21) holds. However 

condition (22) is only necessary, but not sufficient. So for few data sets, the 

optimization procedure could fail to obtain a solution simply because such a solution 

does not exist. This aspect is highlighted in the next section of the paper. 

For example, if there are 𝑛𝑏 = 3 buyers and 𝑛𝑠 = 2 sellers, (22) gives us a limit 

price of 100 for each seller, as well as a limit price of 300 for each buyer. 

5.3. Results and discussion 

The information regarding the size of our data set is summarized in Table 1. We 

present the minimum and maximum number of arcs for each DAG from the subset 

of DAGs characterized by the same number of nodes. Additionally, we have 

compared the maximum number of arcs of a DAG from our data set, with the 

maximum number of arcs of a fully connected DAG with 𝑛 of nodes, i.e., 
𝑛⋅(𝑛−1)

2
. 

This value can be obtained for DAGs such that their adjacency matrix contains only 

ones in its upper triangle, while the lower triangle and the main diagonal contain only 

zeroes. 

Table 1.  Size of data sets 

Number of nodes Number of arcs 

𝑛 min (data set) max (data set) max 
𝑛⋅(𝑛−1)

2
 

5 3 10 10 

6 3 15 15 

7 4 21 21 

8 4 28 28 

9 5 36 36 

10 7 45 45 

15 12 99 105 

20 19 177 190 

30 39 401 435 

40 67 721 780 

50 107 1111 1225 
 

Analysing Table 1, we see that when the number of vertices is smaller, i.e., 

𝑛 ∈ {5, 6, 7, 8, 9, 10} our data set contains fully connected DAGs. Nevertheless, for 

larger values of 𝑛 this does not hold. For example, analysing the graphs with 𝑛 = 40 

vertices, we observe that the maximum number of arcs of the DAGs in our data set 

is 721, while a fully connected DAG with 40 vertices has 780 arcs. 

The number of vertices and arcs of the intermediation DAG provides an estimate 

of the “size” of the optimization problem. Parameter 𝑛 represents the number of 

participant agents. It also gives the number of terms of the sum defining the Nash 

social welfare function (see (5)). Parameter 𝑒 represents the number of transactions. 

It also equals the number of decision variables of the optimization problem. Our 

largest optimization problem had 1111 decision variables, as Table 1 clearly 
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illustrates. Note however that the largest optimization problem that we could 

successfully solve was graph-50-90-2 comprising 1102 transactions. 

We have created a Python script for invoking the convex optimization engine 

on each problem instance of our data set. We configured the solver as follows: 

1. The maximum number of iterations, captured by maxiters parameter, was 

set to 30. 

2. The number of iterative refinement steps when solving Karush–Kuhn–

Tucker equations, captured by refinement parameter, was set to 2. 

3. The flag for turning on the output of the optimization progress, captured by 

show_progress parameter, was set to True. 

4. The various tolerances, captured by abstol, reltol, and feastol 

parameters, were initialized with their default values 1×10-7, 1×10-6, and 

respectively 1×10-7. 

The maximum number of iterations that were required for successfully solving 

an optimization problem was 29. This was obtained for data set graph-40-10-8. 

We recorded the computation times spent by running the optimization process, 

for each set of problem instances with a given number of participants. These results 

are presented in Table 2.  

It is worth observing that the total running time required for solving all the 

problems with 50 vertices, was significantly larger than for all the other problems. 

This is explained by the fact that convergence failed for a total of 13 problems, all of 

them representing DAGs with 50 vertices. 

Table 2. Computation time 

Number of nodes 𝑛 Time, s 

5 1.875 

6 1.875 

7 1.953 

8 2.062 

9 2.906 

10 3.437 

15 6.390 

20 9.890 

30 38.843 

40 134.109 

50 1589.890 

Total 1782.230 
 

We make one important note before presenting our results of the optimization 

process. As it is already stated in our previous work [12], the sum of utilities of all 

the participants of an intermediation network is constant, as shown by: 

(23) ∑ 𝑢𝑖
𝑛
𝑖=1 = ∑ 𝛽𝑏 − ∑ 𝜎𝑠𝑠∈𝒮  𝑏∈ℬ . 

Therefore, if we denote by 𝑢𝛿 the increment utility determined using (24), and 

if we apply the classic inequality between arithmetic and geometric means, we are 

able to obtain the upper bound of Nash social utility function, as given by (25):  

(24) 𝑢𝛿 =
(∑ 𝛽𝑏−∑ 𝜎𝑠𝑠∈𝒮  𝑏∈ℬ )

𝑛
, 

(25) 𝑈(𝐩) ≤ 𝑛 log𝑢𝛿 . 
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Note that the upper bound 𝑛 log 𝑢𝛿 of Nash social utility function can be 

achieved if and only if linear system  

(26) (𝐷 ⋅ 𝐩 + 𝐛)𝑖 = 𝑢𝛿      for all     𝑖 = 1,… , 𝑛, 
has positive solutions. 

We can use this observation to distinguish between two different situations 

when our solver will return an optimal solution: 

1. The optimal solution of our problem is obtained when all participants receive 

the same utility. In this case solving linear system (26) will produce positive values 

representing feasible transaction prices that determine equal utilities for all 

participants. For obvious reasons, we will label this case as “trivial” in what follows. 

2. If linear system (26) does not have positive solutions then we must run the 

optimization solver to obtain a solution that maximizes that Nash social welfare. 

Obviously, in this case the utilities of participants will not be equal. For obvious 

reasons, we will label this case as “non-trivial” in what follows. 

There are also two different situations when the optimization solver fails to 

obtain solutions: 

1. The optimization terminates after performing the maximum number of 

iterations, without reaching convergence. We label this situation as “unknown”, with 

the obvious meaning that we do not know the optimality status of the obtained 

solution. 

2. The optimization terminates abruptly with the solver raising software 

exception. We label this situation as “exception”. One possible explanation could be 

that in this particular case the intermediation DAG is not collectively profitable. 

Recall that data sets were generated by assuring only the necessary condition of 

collective profitability. Therefore it is possible that some of our problem instances 

represent intermediation DAGs that are not collectively profitable. 

The optimization results are shown in Table 3. For each set of graphs with the 

same given number of nodes we distinguish between each of the four possible 

optimization outcomes: “trivial”, “non-trivial”, “exception”, and “unknown”. 

Unsurprisingly, in most of the situations, the optimization engine produced the trivial 

solution. Nevertheless, for a rather significant number of cases, i.e., between 17.5% 

(for 𝑛 = 40) and 44.2% (for 𝑛 = 7), a non-trivial solution was obtained. These 

results clearly depend on the problem structure (i.e., the underlying DAG), as well as 

on the values of limit price vectors 𝛔 and 𝛃. For example, a non-trivial solution was 

obtained for problem graph-50-20-9. The problem has 50 vertices, 216 arcs, while 

the convergence was obtained in 22 iterations. 

We also observed that the optimization engine terminated for at least one case 

by raising software exception (most probably because the intermediation DAG was 

not collectively profitable), for all the values of the number of participants 𝑛 from 7 

to 50. A deeper investigation revealed that in all these cases (20 in total, see the 

column of Table 3 titled Exception), the DAG density factor was at most 40%, while 

in 17 of these cases the density factor of the graph was at most 20%, i.e., the graph 

was sparse. 

Last but not least observe that the optimization solver terminated neither with 

exception nor with convergence (see the column of Table 3 titled Unknown) for 13 
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problems of 50 vertices. We believe that these outcomes were either caused by the 

internal functionality of the solver or by the fact that the underlying DAG is not 

collectively profitable. It is interesting to note that this happened for DAGs with 

density factor above 70%, i.e., for rather dense graphs, 
 

Table 3.  Optimization results 

Number of nodes Success Failure 

𝑛 Trivial Non-trivial Exception Unknown 

5 68 22 0 0 

6 68 22 0 0 

7 61 27 2 0 

8 72 15 3 0 

9 65 20 5 0 

10 68 21 1 0 

15 72 14 4 0 

20 61 27 2 0 

30 80 9 1 0 

40 82 7 1 0 

50 67 9 1 13 

6. Conclusion 

Our main achievement is the formulation of the problem of determining optimal 

pricing strategies in semi-competitive intermediation networks, as nonlinear convex 

optimization. The optimization criterion targets maximizing Nash social welfare of 

the whole society of participant agents to the intermediation network. We obtained 

theoretical results stating that if the network is collectively profitable then there 

always exists a globally optimal pricing strategy that participants can employ to 

maximize their Nash social welfare. Additionally we have presented evidence of the 

feasibility of our approach by running computational experiments using a nonlinear 

convex optimization package. The experimental results are consistent with our 

theoretical conclusions and they support the practical value of our proposed model. 
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