
 81

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 20, No 5

Special issue on Innovations in Intelligent Systems and Applications

Sofia  2020 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2020-0042

Optimal Semi-Competitive Intermediation Networks

Amelia Bădică1, Costin Bădică1, Maria Ganzha2, Mirjana Ivanović3,

Marcin Paprzycki4
1University of Craiova, Craiova, Romania
2Warsaw University of Technology, Warsaw, Poland
3University of Novi Sad, Novi Sad, Serbia
4Polish Academy of Sciences, Warsaw, Poland

E-mails: ameliabd@yahoo.com cbadica@software.ucv.ro Maria.Ganzha@ibspan.waw.pl

mira@dmi.uns.ac.rs marcin.paprzycki@ibspan.waw.pl

Abstract: In this work we address the problem of optimizing collective profitability

in semi-competitive intermediation networks defined as augmented directed acyclic

graphs. Network participants are modeled as autonomous agents endowed with

private utility functions. We introduce a mathematical optimization model for

defining pricing strategies of network participants. We employ welfare economics

aiming to maximize the Nash social welfare of the intermediation network. The paper

contains mathematical results that theoretically prove the existence of such optimal

strategies. We also discuss computational results that we obtained using a nonlinear

convex numerical optimization package.

Keywords: Social welfare, Intermediation, Profitability, Nonlinear convex

optimization, Directed acyclic graph.

1. Introduction

Current developments in Computing and Information Technology support the

practical application of graph and network models in many areas of science and

engineering, including the emergent fields of e-Commerce and e-Business.

Researchers in Economics and Computer Science are interested to understand how

intermediation networks conceptually emerge and technically develop. Economists

are focused on intermediation in decentralized trading markets comprising

autonomous business agents. Meeting, interaction and trading of buyers and seller is

now facilitated either through direct contact, or via intermediation agents, with

reduced cost and increased gain. Computer Scientists have developed digital

decentralized markets where business partners assisted by software agents can

register their capabilities, search for potential partners, and involve in trading

activities [6, 13].

 82

Current practices in the management of supply and distribution activities

assume the engagement of business agents in inter-related and concurrently operating

supply and distribution channels. In our recent research work we are interested in the

modelling and analysis of such complex business processes as semi-competitive

intermediation networks. Our results on this subject are presented in papers [4, 5] and

synthesis paper [12] and refer to the following aspects of the problem: i) the

introduction of a domain-independent process model, grounded on Directed Acyclic

Graphs (DAG hereafter), and ii) the development of necessary and sufficient

conditions that guarantee profitable pricing strategies of involved actors in the

intermediation process.

Observe that most of existing research in intermediation processes is developed

in a competitive environment. However, we have noticed that actually intermediation

networks are serving supply and distribution chains operating in semi-competitive,

rather than competitive environment. This means that while participating agents are

collaborating so that the underlying business process is supporting the service of its

external customers, the agents are also self-interested with the goal to maximize both

their immediate private revenue, as well as their longer-term welfare [12].

Our proposed model is relevant for both single and multiple company settings.

It covers also B2B models of industrial consortia and private industrial networks that

perform network-based B2B e-Commerce in privately, as well as collectively own

“extended enterprises”. Such complex organizations include carefully selected

multiple independent business participants committed to tightly coordinate

efficiently and collaborate for supporting industry-wide goals, quite often serving a

single and very large manufacturer [14].

All participants in the intermediation business process define an “agent society”.

Social choice theory postulates that social choice is governed by a social welfare

function mapping tuples of “individually preferred” outcomes of the participants to

the “socially preferred” outcome. Four rationality axioms that must be satisfied by an

acceptable social welfare function are proposed based on common-sense principles.

This enabled the proof that there is a unique mathematical function that satisfies these

axioms, known as the Nash social welfare function [9].

Let us assume that participants’ choices are determined by transaction prices

such that their social welfare can be quantitatively evaluated as Nash social welfare

index. Our most important result is the introduction of optimal pricing strategies of

transaction participants as nonlinear convex optimization problem [7]. We obtain

theoretical results regarding the existence of such optimal pricing strategies in semi-

competitive intermediation networks. Our results are also supported by experimental

evidence.

2. Intermediation networks

We start by reviewing our definition of collectively profitable intermediation

processes [12]. Central to this definition is the concept of intermediation DAG. We

consider a simplified form of this definition, by discarding DAG annotations of

exchanged products, as they are not relevant for the results reported in this paper.

 83

Definition 1. Intermediation DAG. Let us consider three finite, nonempty and

pairwise disjoint sets ‒ 𝒮, ℬ, and ℐ be of sellers, buyers and intermediaries. An

intermediation DAG is represented by the triple 𝒢 = 〈𝒱,𝒜, 𝑝〉 such that:

1. The set of vertices is defined by 𝑉 = 𝒮 ∪ ℬ ∪ ℐ.

2. The sets of incoming arcs to 𝒮 and outgoing arcs from ℬ are empty.

3. 𝑝 ∶ 𝒮 ∪ ℬ ∪ 𝒜 → [0,+∞) is a function that annotates the elements of 𝐺 with

pricing information, as follows.

a. If 𝑠 ∈ 𝒮 then 𝑝(𝑠) = 𝜎𝑠 > 0. Here 𝛔 denotes the vector of seller limit

prices.

b. If 𝑏 ∈ ℬ then 𝑝(𝑏) = 𝛽𝑏 > 0. Here 𝛃 denotes the vector of buyer limit

prices.

c. If 𝑡 = (𝑢, 𝑣) ∈ 𝒜 denotes a transaction then 𝑝(𝑡) = 𝑝𝑢,𝑣 > 0 is the

transaction price for which seller agent 𝑢 agrees to sell its products to buyer agent 𝑣.

Limit prices are explained in what follows. Each participant agent (with seller,

buyer or intermediation role) that is part of an intermediation transaction is selling

and/or buying a given set of products. Their strategies are governed by suitable

chosen and pre-defined limit prices. Let us denote with 𝜎𝑠 the limit price of seller 𝑠.

So agent 𝑠 agrees to sell its products only at price 𝑝 ≥ 𝜎𝑆. Similarly, let us denote

with 𝛽𝑏 the limit price of buyer 𝑏. So agent 𝑏 agrees to purchase its set of products

only at price 𝑝 ≤ 𝛽𝑏.

Let us consider the example intermediation DAG shown in Fig. 1. Observe that:

𝒮 = {1, 2}, ℬ = {5, 7, 8}, 𝑝(1) = 𝜎1, 𝑝(5) = 𝛽5, and 𝑝((3, 6)) = 𝑝3,6.

Let us define functions “in” and “out”:

(1) in ∶ 𝒱 → 2𝒱, in(𝑣) = {𝑢 | (𝑢, 𝑣) ∈ 𝒜},
out ∶ 𝒱 → 2𝒱 , out(𝑣) = {𝑢 | (𝑣, 𝑢) ∈ 𝒜}.

Fig. 1. Sample DAG-based intermediation process

We can now define the utility 𝑢𝑣 = 𝑢(𝑣) of each agent node 𝑣 ∈ 𝒱:

the utility of seller agent 𝑠 ∈ 𝒮 is

(2) 𝑢(𝑠) = −𝜎𝑠 + ∑ 𝑝𝑠,𝑣𝑣∈out(𝑠) ;

the utility of buyer agent 𝑏 ∈ ℬ is

(3) 𝑢(𝑏) = 𝛽𝑏 − ∑ 𝑝𝑣,𝑏𝑣∈in(𝑏) ;

the utility of intermediation agent 𝑖 ∈ ℐ is

(4) 𝑢(𝑖) = ∑ 𝑝𝑖,𝑣𝑣∈out(𝑖) − ∑ 𝑝𝑣,𝑖𝑣∈in(𝑖) .

 84

Participant agent 𝑣 ∈ 𝒱 is called profitable if and only if the outcome of its

transaction is a positive utility, i.e., 𝑢(𝑣) ≥ 0.

Definition 2. Collective profitability. An intermediation DAG 𝒢 is called

collectively profitable if and only if there exist positive transaction prices 𝑝 that

annotate 𝒢 in such a way that for each agent 𝑣 captured by a vertex of 𝒢 we have

𝑢(𝑣) ≥ 0.

Our preliminary results include a set of necessary and sufficient collective

profitability conditions that must be satisfied by the vectors of limit prices 𝛔 and 𝛃

[12]. Here, we assume that these conditions hold, i.e., our DAG is collectively

profitable, and we focus on studying the maximization of social welfare as

mathematical optimization problem.

3. Optimal social welfare

Let 𝒢 = 〈𝒱,𝒜, 𝑝〉 be a collectively profitable intermediation DAG. This means that

𝑢𝑣 = 𝑢(𝑣) ≥ 0 for each participant agent 𝑣 ∈ 𝒱. Let 𝑛 ≥ 1 be the total number of

participants (i.e., the cardinal of finite set 𝒮) and 𝑒 ≥ 1 be the total number of

transactions (i.e., the cardinal of finite set 𝒜). Hence, we can number participants

with 1, 2, … , 𝑛 and transactions (in lexicographical order) with 1, 2, … , 𝑒.

The Nash social welfare function for the society of participant agents defined

by intermediation graph 𝒢 by:

(5) 𝑈(𝐩) = ∑ log𝑢𝑖
𝑛
𝑖=1 .

Observe that if graph 𝒢 is collectively profitable then 𝑈 is well defined by (5),

as logarithm is defined for positive real numbers and utilities 𝑢𝑖 are positive for all

𝑖 = 1, 2, … , 𝑛 (assuming that log 0 = −∞). Let 𝐛 ∈ ℝ𝑛×1 be the vector of signed

limit prices, defined by:

(6) 𝑏𝑖 = {
−𝜎𝑖 𝑖 ∈ 𝒮,
𝛽𝑖 𝑖 ∈ ℬ,
0 𝑖 ∈ ℐ.

We denote with 𝐷 ∈ ℝ𝑛×𝑒 the incidence matrix [1] of 𝐺, defined by:

(7) 𝐷𝑖,𝑗 = {
1 if the head of arc 𝑗 is node 𝑖 ,

−1 if the tail of arc 𝑗 is node 𝑖,
0 otherwise.

Vector 𝐮 representing the utilities of participant agents can be defined by:

(8) 𝐮 = 𝐷 ⋅ 𝐩 + 𝐛.

Collective profitability condition 𝐮 ≽ 0 can be combined with positivity

condition of transaction prices 𝐩 ≽ 0 thus producing the next equation. Note that the

next equation completely defines the domain of definition of the social welfare

function 𝑈:

(9)
−𝐷 ⋅ 𝐩 ≼ 𝐛,

−𝐩 ≼ 0.

According to standard reference [11], a nonempty intersection of half-spaces

defines a set called polyhedron. Moreover, a bounded polyhedron is also known as

polytope.

 85

Proposition 1. The domain of definition of social welfare function 𝑈 defined

by (9) is a polytope.

P r o o f: Observe that (9) represents a finite intersection of half-spaces, thus

defining a polyhedron. Moreover, we can use the positivity conditions of 𝐩 to

construct a lower bound. Moving up in the intermediation DAG, starting from its

bottom layer denoting buyers (see example from Fig. 1), a set of upper bounds, one

for each transaction price, can be recursively defined. Thus, we obtain that the domain

of definition of social welfare function 𝑈 is in fact a bounded polyhedron, i.e., a

polytope. □

Let us now focus on studying the convexity of function 𝑈. We first compute the

first and second order derivatives of 𝑈, as follows:

(10)
𝜕𝑈

𝜕𝑝𝑖,𝑗
=

1

𝑢𝑖
 –

1

𝑢𝑗
,

𝜕2 𝑈

𝜕𝑝𝑖,𝑗
2 = −(

1

𝑢𝑖
2 +

1

𝑢𝑗
2),

𝜕2𝑈

𝜕𝑝𝑖,𝑗𝜕𝑝𝑖,𝑘

=
𝜕2𝑈

𝜕𝑝𝑗,𝑖𝜕𝑝𝑘,𝑖

= −
1

𝑢𝑖
2 ,

𝜕2𝑈

𝜕𝑝𝑖,𝑗𝜕𝑝𝑗,𝑘
=

𝜕2𝑈

𝜕𝑝𝑗,𝑘𝜕𝑝𝑖,𝑗
=

1

𝑢𝑗
2.

Analysing (10) we observe that the Jacobian and Hessian matrices of 𝑈 are
1 × 𝑒 and, respectively, 𝑒 × 𝑒 matrices and they can be defined by:

(11) 𝐽𝑈(𝐩) = [
1

𝐮
]
T
𝐷,

𝐻𝑈(𝐩) = 𝐷Tdiag ([−
1

𝐮2])𝐷.

The Hessian matrix 𝐻𝑈 is used for checking that the social welfare function 𝑈

is concave, while both Hessian and Jacobian matrices 𝐻𝑈 and 𝐽𝑈 are also used to

implement the nonlinear convex optimization problem.

Proposition 2. Concavity of social welfare function. The Nash social welfare

function of a collectively profitable DAG 𝒢 defined by (5) on the domain defined by

(9) is a concave function.

P r o o f: The proof utilizes an adaptation of Sylvester’s criterion for semi-

definite positive or negative matrices. Basically, in our case we must prove that the

Hessian matrix 𝐻𝑈(𝐩), is negative semi-definite. This result is obtained by checking

that all its principal minors of order 𝑘 have sign (−1)𝑘. According to [10], this

condition entails that function 𝑈 is concave.

Let Δ𝑖1,𝑖2,…,𝑖𝑘 be a principal minor of the Hessian matrix 𝐻𝑈(𝐩) such that

1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑒 denote 𝑘 arbitrary arcs of 𝒢. Let 𝒢′ be the undirected sub-

graph of 𝒢 induced by the subset {𝑖1, 𝑖2, … , 𝑖𝑘} of arcs and then by discarding its arc

orientations. We denote the set of vertices of 𝒢′ with 𝑉′.

In the case that 𝒢′ does contain cycles we can easily observe that Δ𝑖1,𝑖2,…,𝑖𝑘 = 0.

Let us consider a cycle together with its orientation. This induces the orientation to

each of its component arcs. Now if we determine the algebraic sum of the Hessian

columns that correspond to all the arcs of the cycle, taking signs according to the arc

orientation relative to the cycle orientation, we obviously obtain zero. Note that the

 86

Hessian columns correspond exactly to the arcs of the cycle, so pairs of terms of this

sum will cancel each other, thus producing the result zero.

In the case that 𝒢′ does not contain cycles we consider the connected

components 𝒢𝑗
′ of 𝒢 ′, 1 ≤ 𝑗 ≤ 𝑝, such that 𝒢𝑗

′ contains 𝑘𝑗 arcs, ∑ 𝑘𝑗
𝑝
𝑗=1 = 𝑘, and 𝒢𝑗

′

has vertices 𝑉𝑗
′. Then, minor Δ𝑖1,𝑖2,…,𝑖𝑘 is defined by the next equation:

(12) Δ𝑖1,𝑖2,…,𝑖𝑘 = (−1)𝑘 ∏ ∑ ∏
1

𝑢𝑖
2𝑖∈𝑆𝑗𝑆𝑗⊆𝑉𝑗

′,|𝑆𝑗|=𝑘𝑗

𝑝
𝑗=1 .

Equation (12) clearly shows that (−1)𝑘Δ𝑖1,𝑖2,…,𝑖𝑘 > 0. □

Theorem 1. Existence and uniqueness of optimal pricing strategy. For each

collectively profitable DAG 𝒢 there exists a unique optimal pricing strategy that

participant agents can collectively apply to maximize the Nash social welfare of 𝒢.

P r o o f: Following Proposition 2 we can conclude that social welfare function

𝑈 of 𝒢 is concave. According to Proposition 1, 𝑈 is well defined on a polytope

domain. Moreover, each polytope is a bounded convex set, so 𝑈 is in fact a concave

function defined on a bounded convex set. We can conclude now that 𝑈 has a local

maximum that is also a global maximum. This proves the existence and uniqueness

of an optimal pricing strategy that participant agents can collectively apply to

maximize their Nash social welfare. □

4. Case study

In this section we consider the detailed example of the sample intermediation graph

presented in Fig. 1. For this example we are going to present its associated matrices,

vectors, as well as the explanation of the proof of Proposition 2.

Matrices 𝐛 and 𝐷 for the sample intermediation DAG 𝒢 shown in Fig. 1 are

introduced by equations (13) and (14). Note that in this case there are 𝑛 = 8 vertices,

i.e., participant agents, as well as 𝑒 = 8 arcs, i.e., transactions.

(13) 𝐛 =

[

−𝜎1

−𝜎2

0
0
𝛽5

0
𝛽7

𝛽8]

,

(14) 𝐷 =

[

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0

−1 0 0 0 1 0 0 0
0 −1 −1 0 0 1 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 −1 1 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1]

.

Each column of the incidence matrix 𝐷 represents a unique arc of 𝒢. For

example, arcs 1, 3, and 4 corresponding to columns 1, 3, and 4 of 𝐷 are as follows:

(1, 3), (2, 4), and (2, 5).

Moreover, Jacobian and Hessian matrices of the sample intermediation DAG

shown in Fig. 1 are given by (15) and (16).

 87

(15) 𝐽𝑈(𝐩) = [
1

𝑢1
−

1

𝑢3

1

𝑢1
−

1

𝑢4

1

𝑢2
−

1

𝑢4

1

𝑢2
−

1

𝑢5

1

𝑢3
−

1

𝑢6

1

𝑢4
−

1

𝑢6

1

𝑢6
−

1

𝑢7

1

𝑢6
−

1

𝑢8
],

(16) 𝐻𝑈(𝐩) =

[

 −

1

𝑢1
2 −

1

𝑢3
2 −

1

𝑢1
2 0 0

1

𝑢3
2 0 0 0

−
1

𝑢1
2 −

1

𝑢1
2 −

1

𝑢4
2 −

1

𝑢4
2 0 0

1

𝑢4
2 0 0

0 −
1

𝑢4
2 −

1

𝑢2
2 −

1

𝑢4
2 −

1

𝑢2
2 0

1

𝑢4
2 0 0

0 0 −
1

𝑢2
2 −

1

𝑢2
2 −

1

𝑢5
2 0 0 0 0

1

𝑢3
2 0 0 0 −

1

𝑢3
2 −

1

𝑢6
2 −

1

𝑢6
2

1

𝑢6
2 0

0
1

𝑢4
2

1

𝑢4
2 0 −

1

𝑢6
2 −

1

𝑢4
2 −

1

𝑢6
2

1

𝑢6
2 0

0 0 0 0
1

𝑢6
2

1

𝑢6
2 −

1

𝑢6
2 −

1

𝑢7
2

1

𝑢7
2

0 0 0 0 0 0
1

𝑢7
2 −

1

𝑢7
2 −

1

𝑢8
2]

.

Let us now consider the following cycle of 𝒢: (1, 3), (3, 6), (6, 4), (4, 1).

Representing arcs by their indices and assigning one of signs + and − to each arc

following its orientation relative to the cycle orientation, we get the cycle:
1, 5, −6, −2. Now it should be rather easy to verify that adding columns 1 and 5

and then subtracting columns 2 and 6 of matrix 𝐻𝑈, zero is obtained, i.e.,
Δ1,5,6,2 = 0.

Let us now consider the minor Δ1,3,4 corresponding to a sub-graph of 𝒢 that does

not contain cycles. In this case our sub-graph 𝒢 ′ has 5 vertices {1, 2, 3, 4, 5} and
𝑝 = 2 connected components (for the meaning of 𝑝 please refer to (12)). Moreover,

as there are 3 arcs we have 𝑘 = 3. Connected components of sub-graph 𝒢′ are defined

by subsets of vertices {1, 3} and {2, 4, 5} so in this case 𝑘1 = 1 and 𝑘2 = 2. So Δ1,3,4

is defined by

(17) Δ1,3,4 = −(
1

𝑢1
2 +

1

𝑢3
2) ⋅ (

1

𝑢2
2⋅𝑢4

2 +
1

𝑢2
2⋅𝑢5

2 +
1

𝑢4
2⋅𝑢5

2),

and obviously (−1)3 ⋅ Δ1,3,4 > 0.

5. Computational experiments

5.1. Experimental setup

In this section we present the computational experiments that we performed for

assessing the correctness and feasibility of our proposed approach. There are many

optimization packages, including more general and powerful frameworks, as well as

specialized language-specific libraries with customized APIs.

In this work we have employed the CVXOPT software package for convex

optimization [3]. The software prototype was implemented using the 64-bit (AMD64)

version of Python 3.7.3 on an ×64-based PC with a 2 cores / 4 threads Intel© CoreTM

i7-5500U CPU at 2.40 GHz and running Windows 10.

Firstly we mapped our problem to the general framework of nonlinear convex

optimization required by CVXOPT package. For this purpose we define two matrices

𝐺 of size (𝑒 + 𝑛) × 𝑒 and 𝐡 of size (𝑛 + 𝑒) × 1 using the equations:

 88

(18) 𝐺 = [
−𝐷
−𝐼𝑒

],

 𝐡 = [
𝐛
0
].

Our optimization problem, captured as nonlinear convex optimization problem

suitable for CVXOPT implementation, can be represented using

(19) minimize − 𝑈(𝐩) = −∑ log(𝐷 ⋅ 𝐩 + 𝐛)𝑖
𝑛
𝑖=1 ,

 subject to 𝐺 ⋅ 𝐩 ≼ 𝐡.
Our implementation using CVXOPT was based on the cvxopt.solvers.cp solver.

In the implementation process we have followed the sequence of steps [3]:

1. Define a Python function, let us call it U, to evaluate the optimization

objective, as well as to check the optimization constraints.

2. Implement Python function U using the definitions of the Jacobian and

Hessian matrices of the objective function, according to (11). Their implementation

has been done using the CVXOPT-specific data type cvxopt.matrix.

3. Define a point x0 inside the domain of the objective function that is used by

function U. This point has bencomputed before calling the solver, following the

details shown below.

4. Prepare a collection of data sets representing problem instances. Each data

set captures a single problem instance corresponding to a specific intermediation

DAG and its associated parameters (limit prices). More details regarding the data sets

are given below.

5. Define a main Python script to describe the whole experiment. This script

loads the data sets, configures the CVXOPT solver with suitable parameters, calls the

solver function cvxopt.solvers.cp, and then obtains the solution representing the

optimization outcome.

We experimentally analysed two possible and distinct options to compute the

required point inside the polytope domain:

1. Map the polytope half-space representation (as given by (9)) to the equivalent

vertex representation [11], and then determine the point by sampling the polytope

interior with a uniform probability distribution.

2. Directly determine the point using the given half-space representation (9).

For that purpose we have used the Chebyshev center of the polytope that represents

the deepest point inside the polytope [7].

We experimentally have tested both approaches on sample polytopes,

employing the PYPOMAN software package for polyhedral manipulations [8]. Our

conclusion has revealed that the first approach is not usable. This is caused by the

excessively large running time of the vertex computation, most probably because the

resulting equivalent polytopes could generally have a too large number of vertices.

For example, for one example intermediation DAG comprising 15 vertices and 35

arcs (i.e., 35 dimensions of the polytope representation), the resulting vertex

representation of this polytope had 58,795 vertices.

Based on these conclusions, we have chosen the second method to complete our

experimental workflow. Nevertheless, it was useful to implement two different

methods for generating points inside the polytope, at least for smaller problem sizes,

 89

to be able to analyse the method convergence for distinct initial points inside the

polytope.

5.2. Data sets

We generated an artificial data set comprising many random DAGs of different sizes,

capturing different intermediation networks. The generating process was

parameterized as follows:

1. The number 𝑛 of graph vertices, defined as an element of the following set

of possible values: {5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50}.
2. The density factor f of the DAG. The higher is the value of the density factor

the more arcs our graph contains. Value of f is given as the percentage of the number

of arcs, from the total possible number of arcs of the DAG, i.e.,
𝑛⋅(𝑛−1)

2
, defined as an

element of the set {10, 20, 30, 40, 50, 60, 70, 80, 90}.
3. Number ng of DAGs for each pair of values n and f. In our experiments we

have set ng = 10.

Using these values, we obtained a total number of 11 ⋅ 9 ⋅ 10 = 990 DAGs in

our generated data set. For the representation of each DAG we have used its

adjacency matrix 𝐴 defined according to (20). Then we converted it into the incidence

matrix representation 𝐷, that was used for the optimization goal:

(20) 𝐴𝑖,𝑗 = {
1 if there exists an arc from 𝑖 to 𝑗,
0 otherwise.

For each DAG we stored its adjacency matrix into a separate text file. The name

of this file was defined to easily identify the parameters of the generating process.

For example, the 5th DAG consisting of 15 vertices and 40% density factor was

stored into a text file named graf-15-40-5.txt.

We close this section with two remarks regarding the process of randomly

generating DAGs to meet the goals of our experiments:

1. The standard generation of random graphs according to a pre-defined density

factor is not enough. The generation process had to ensure that the resulting directed

graph is in fact a proper DAG. This desideration was achieved by constraining the

generating process to always produce adjacency matrices in upper triangular form.

This condition assures that the output directed graph is a DAG. Conversely, this

process is not restricting the generated DAGs. The adjacency matrix representation

of any possible DAG can be mapped to upper triangular format by performing a

renumbering the graph vertices according to one of the topological orderings of the

graph.

2. In the generating process we have discarded as being not relevant all the

DAGs that contain “singular” nodes, without incoming and outgoing arcs, as these

graphs were deemed unsatisfactory to capture intermediation DAGs.

Last but not least, we chose appropriate values for the limit prices of the buyers

and sellers. According to our theoretical results from [12], a necessary condition to

guarantee collective profitability of an intermediation DAG is

(21) ∑ 𝛽𝑏𝑏∈ℬ ≥ ∑ 𝜎𝑠𝑠∈𝒮 .

 90

Let 𝑛𝑏 = |ℬ| and 𝑛𝑠 = |𝒮| denote the number of buyers and sellers. We chose

𝛔 and 𝛃 according to

(22)
𝜎𝑠 = 𝛔 = 100 for all 𝑠 ∈ 𝒮,

𝛽𝑏 = 𝛃 = 𝛔 ⋅ (⌈
𝑛𝑏

𝑛𝑠
⌉ + 1) for all 𝑏 ∈ ℬ.

Observe that this choice guarantees that condition (21) holds. However

condition (22) is only necessary, but not sufficient. So for few data sets, the

optimization procedure could fail to obtain a solution simply because such a solution

does not exist. This aspect is highlighted in the next section of the paper.

For example, if there are 𝑛𝑏 = 3 buyers and 𝑛𝑠 = 2 sellers, (22) gives us a limit

price of 100 for each seller, as well as a limit price of 300 for each buyer.

5.3. Results and discussion

The information regarding the size of our data set is summarized in Table 1. We

present the minimum and maximum number of arcs for each DAG from the subset

of DAGs characterized by the same number of nodes. Additionally, we have

compared the maximum number of arcs of a DAG from our data set, with the

maximum number of arcs of a fully connected DAG with 𝑛 of nodes, i.e.,
𝑛⋅(𝑛−1)

2
.

This value can be obtained for DAGs such that their adjacency matrix contains only

ones in its upper triangle, while the lower triangle and the main diagonal contain only

zeroes.

Table 1. Size of data sets

Number of nodes Number of arcs

𝑛 min (data set) max (data set) max
𝑛⋅(𝑛−1)

2

5 3 10 10

6 3 15 15

7 4 21 21

8 4 28 28

9 5 36 36

10 7 45 45

15 12 99 105

20 19 177 190

30 39 401 435

40 67 721 780

50 107 1111 1225

Analysing Table 1, we see that when the number of vertices is smaller, i.e.,

𝑛 ∈ {5, 6, 7, 8, 9, 10} our data set contains fully connected DAGs. Nevertheless, for

larger values of 𝑛 this does not hold. For example, analysing the graphs with 𝑛 = 40

vertices, we observe that the maximum number of arcs of the DAGs in our data set

is 721, while a fully connected DAG with 40 vertices has 780 arcs.

The number of vertices and arcs of the intermediation DAG provides an estimate

of the “size” of the optimization problem. Parameter 𝑛 represents the number of

participant agents. It also gives the number of terms of the sum defining the Nash

social welfare function (see (5)). Parameter 𝑒 represents the number of transactions.

It also equals the number of decision variables of the optimization problem. Our

largest optimization problem had 1111 decision variables, as Table 1 clearly

 91

illustrates. Note however that the largest optimization problem that we could

successfully solve was graph-50-90-2 comprising 1102 transactions.

We have created a Python script for invoking the convex optimization engine

on each problem instance of our data set. We configured the solver as follows:

1. The maximum number of iterations, captured by maxiters parameter, was

set to 30.

2. The number of iterative refinement steps when solving Karush–Kuhn–

Tucker equations, captured by refinement parameter, was set to 2.

3. The flag for turning on the output of the optimization progress, captured by

show_progress parameter, was set to True.

4. The various tolerances, captured by abstol, reltol, and feastol

parameters, were initialized with their default values 1×10-7, 1×10-6, and

respectively 1×10-7.

The maximum number of iterations that were required for successfully solving

an optimization problem was 29. This was obtained for data set graph-40-10-8.

We recorded the computation times spent by running the optimization process,

for each set of problem instances with a given number of participants. These results

are presented in Table 2.

It is worth observing that the total running time required for solving all the

problems with 50 vertices, was significantly larger than for all the other problems.

This is explained by the fact that convergence failed for a total of 13 problems, all of

them representing DAGs with 50 vertices.

Table 2. Computation time

Number of nodes 𝑛 Time, s

5 1.875

6 1.875

7 1.953

8 2.062

9 2.906

10 3.437

15 6.390

20 9.890

30 38.843

40 134.109

50 1589.890

Total 1782.230

We make one important note before presenting our results of the optimization

process. As it is already stated in our previous work [12], the sum of utilities of all

the participants of an intermediation network is constant, as shown by:

(23) ∑ 𝑢𝑖
𝑛
𝑖=1 = ∑ 𝛽𝑏 − ∑ 𝜎𝑠𝑠∈𝒮 𝑏∈ℬ .

Therefore, if we denote by 𝑢𝛿 the increment utility determined using (24), and

if we apply the classic inequality between arithmetic and geometric means, we are

able to obtain the upper bound of Nash social utility function, as given by (25):

(24) 𝑢𝛿 =
(∑ 𝛽𝑏−∑ 𝜎𝑠𝑠∈𝒮 𝑏∈ℬ)

𝑛
,

(25) 𝑈(𝐩) ≤ 𝑛 log𝑢𝛿 .

 92

Note that the upper bound 𝑛 log 𝑢𝛿 of Nash social utility function can be

achieved if and only if linear system

(26) (𝐷 ⋅ 𝐩 + 𝐛)𝑖 = 𝑢𝛿 for all 𝑖 = 1,… , 𝑛,
has positive solutions.

We can use this observation to distinguish between two different situations

when our solver will return an optimal solution:

1. The optimal solution of our problem is obtained when all participants receive

the same utility. In this case solving linear system (26) will produce positive values

representing feasible transaction prices that determine equal utilities for all

participants. For obvious reasons, we will label this case as “trivial” in what follows.

2. If linear system (26) does not have positive solutions then we must run the

optimization solver to obtain a solution that maximizes that Nash social welfare.

Obviously, in this case the utilities of participants will not be equal. For obvious

reasons, we will label this case as “non-trivial” in what follows.

There are also two different situations when the optimization solver fails to

obtain solutions:

1. The optimization terminates after performing the maximum number of

iterations, without reaching convergence. We label this situation as “unknown”, with

the obvious meaning that we do not know the optimality status of the obtained

solution.

2. The optimization terminates abruptly with the solver raising software

exception. We label this situation as “exception”. One possible explanation could be

that in this particular case the intermediation DAG is not collectively profitable.

Recall that data sets were generated by assuring only the necessary condition of

collective profitability. Therefore it is possible that some of our problem instances

represent intermediation DAGs that are not collectively profitable.

The optimization results are shown in Table 3. For each set of graphs with the

same given number of nodes we distinguish between each of the four possible

optimization outcomes: “trivial”, “non-trivial”, “exception”, and “unknown”.

Unsurprisingly, in most of the situations, the optimization engine produced the trivial

solution. Nevertheless, for a rather significant number of cases, i.e., between 17.5%

(for 𝑛 = 40) and 44.2% (for 𝑛 = 7), a non-trivial solution was obtained. These

results clearly depend on the problem structure (i.e., the underlying DAG), as well as

on the values of limit price vectors 𝛔 and 𝛃. For example, a non-trivial solution was

obtained for problem graph-50-20-9. The problem has 50 vertices, 216 arcs, while

the convergence was obtained in 22 iterations.

We also observed that the optimization engine terminated for at least one case

by raising software exception (most probably because the intermediation DAG was

not collectively profitable), for all the values of the number of participants 𝑛 from 7

to 50. A deeper investigation revealed that in all these cases (20 in total, see the

column of Table 3 titled Exception), the DAG density factor was at most 40%, while

in 17 of these cases the density factor of the graph was at most 20%, i.e., the graph

was sparse.

Last but not least observe that the optimization solver terminated neither with

exception nor with convergence (see the column of Table 3 titled Unknown) for 13

 93

problems of 50 vertices. We believe that these outcomes were either caused by the

internal functionality of the solver or by the fact that the underlying DAG is not

collectively profitable. It is interesting to note that this happened for DAGs with

density factor above 70%, i.e., for rather dense graphs,

Table 3. Optimization results

Number of nodes Success Failure

𝑛 Trivial Non-trivial Exception Unknown

5 68 22 0 0

6 68 22 0 0

7 61 27 2 0

8 72 15 3 0

9 65 20 5 0

10 68 21 1 0

15 72 14 4 0

20 61 27 2 0

30 80 9 1 0

40 82 7 1 0

50 67 9 1 13

6. Conclusion

Our main achievement is the formulation of the problem of determining optimal

pricing strategies in semi-competitive intermediation networks, as nonlinear convex

optimization. The optimization criterion targets maximizing Nash social welfare of

the whole society of participant agents to the intermediation network. We obtained

theoretical results stating that if the network is collectively profitable then there

always exists a globally optimal pricing strategy that participants can employ to

maximize their Nash social welfare. Additionally we have presented evidence of the

feasibility of our approach by running computational experiments using a nonlinear

convex optimization package. The experimental results are consistent with our

theoretical conclusions and they support the practical value of our proposed model.

Acknowledgments: This work has been supported by the joint research project “Novel methods for

development of distributed systems” under the agreement on scientific cooperation between the Polish

Academy of Sciences and Romanian Academy for years 2019-2021.

R e f e r e n c e s

1. A h u j a, R. K., T. L. M a g n a n t i, J. B. O r l i n. Network Flows: Theory, Algorithms, and

Applications. Pearson, 1993.

2. A n d e r s e n, M., J. D a h l, Z. L i u, L. V a n d e n b e r g h e. Interior-Point Methods for Large-

Scale Cone Programming. – In: S. Sra, S. Nowozin, S. J. Wright, Eds. Optimization for

Machine Learning, MIT Press, 2011, pp. 1-26.

3. A n d e r s e n, M., J. D a h l , L. V a n d e n b e r g h e. CVXOPT User’s Guide. Release 1.2.4,

20 January 2020.

https://cvxopt.org/userguide

https://cvxopt.org/userguide

 94

4. B ă d i c ă, A., C. B ă d i c ă, M. I v a n o v i ć, I. B u l i g i u. Collective Profitability and Welfare in

Selling-Buying Intermediation Processes. – In: N. Nguyen, L. Iliadis, Y. Manolopoulos,

B. Trawiński, Eds. Computational Collective Intelligence. ICCCI 2016. Part II, Lecture Notes

in Computer Science. Vol. 9876. Cham, Springer, 2016, pp. 14-24.

5. B ă d i c ă, A., C. B ă d i c ă, M. I v a n o v i ć, D. L o g o f ă t u. Collective Profitability of DAG-

Based Selling-Buying Intermediation Processes. – In: J. Del Ser, E. Osaba, M. N. Bilbao,

J. J. Sánchez-Medina, M. Vecchio, X.-S. Yang, Eds. Intelligent Distributed Computing XII.

Studies in Computational Intelligence. Vol. 798. Cham, Springer, 2018, pp. 414-424.

6. B ă d i c ă, C., M. G a n z h a, M. P a p r z y c k i, A. P î r v ă n e s c u. Experimenting with a Multi-

Agent E-Commerce Environment. – In: V. Malyshkin V, Ed. Parallel Computing

Technologies. PaCT 2005. Lecture Notes in Computer Science. Vol. 3606. Berlin, Heidelberg,

Springer, 2005, pp. 393-402.

7. B o y d, S., L. V a n d e n b e r g h e. Convex Optimization. Cambridge University Press, 2004.

8. C a r o n , S. PYthon Module for POlyhedral MANipulations – PYPOMAN. Version 1.0. 2020.

https://scaron.info/doc/pypoman/

9. K a n e k o, M., K. N a k a m u r a. The Nash Social Welfare Function. – Econometrica, Vol. 47,

1974, No 2, pp. 423-435.

10. P r u s s i n g, J. E. The Principal Minor Test for Semidefinite Matrices. – Journal of Guidance,

Control, and Dynamics, Vol. 9, 1986, No 1, pp. 121-122.

11. T h o m a s, R. R. Lectures in Geometric Combinatorics. – In: Student Mathematical Library:

IAS/Park City Mathematical Subseries. Vol. 33. American Mathematical Society, 2006.

12. B ă d i c ă, A., C. B ă d i c ă, M. I v a n o v i ć, D. L o g o f ă t u. Collective Profitability in Semi-

Competitive Intermediation Networks. – Journal of Intelligent and Fuzzy Systems, Vol. 37,

2019, pp. 7357-7368.

13. P a r s o n s, S., J. A. R o d r í g u e z-A g u i l a r, M. K l e i n. Auctions and Bidding: A Guide for

Computer Scientists. – ACM Computing Surveys, Vol. 43, 2011, No 2, pp. 10:1-10:59.

14. L a u d o n, K. C., C. G. T r a v e r. e-Commerce 2019: Business, Technology and Society. 15th

Edition. Pearson, 2019.

Received: 06.11.2019; Second Version: 05.03.2020; Third Version: 17.04.2020;

Accepted: 22.04.2020

