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Abstract: In recent years, due to its non-volatile memory, non-locality, and weak 

singularity features, fractional calculations have begun to take place frequently in 

artificial neural network implementations and learning algorithms. Therefore, there 

is a need for circuit element implementations providing fractional function behaviors 

for the physical realization of these neural networks. In this study, a previously 

defined integer order memristor element equation is changed and a fractional order 

memristor is given in a similar structure. By using the obtained mathematical 

equation, frequency-dependent pinched hysteresis loops are obtained. A memristance 

simulator circuit that provides the proposed mathematical relationship is proposed. 

Spice simulations of the circuit are run and it is seen that they are in good agreement 

with the theory. Also, the non-volatility feature has been demonstrated with Spice 

simulations. The proposed circuit can be realized by using the integrated circuit 

elements available on the market. With a small connection change, the proposed 

structure can be used to produce both positive and negative memristance values. 

Keywords: Memristor, Memristance Simulator, Fractional Order, Circuit 

Implementation, ANN Realization, ANN Hardware. 

1. Introduction 

Memristor is a two-terminal passive circuit element, which provides a non-linear 

relationship between charge and flux [1]. HP’s announcement that the memristor 

element was physically accomplished [2] has led researchers to focus on work on the 

potential uses of the memristor. As a result of the researchers’ study, new studies 

have emerged in application areas such as Analog circuit designs [3], chaotic circuits 

[4], sensors [5], memory devices [6] and synapse realization [7-8]. Memristor 

emulator circuits mostly used in artificial neural network realization because of 

highly similar characteristic behaviour of biologic synapses [9]. 

New research has shown that fractional order calculus is an effective and very 

useful tool, such as integer order calculus, for the design of efficient learning 
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algorithms [10, 11]. As an example from the studies in the literature, the fractional 

calculus-based Hopfield Neural Networks was proposed in 2009 by B o r o o m a n d  

and M e n h a j  [12]. In this study, instead of the current of the capacitor element in 

the dynamic neuron of the Hopfield model, a current proportional to the fractional 

order derivative of the element voltage is explained. A new fractional adaptive 

learning approach, called the fractional steepest descent, was proposed in 2015 by 

P u  et al. [13]. In this study, the learning conditions, stability, and convergence of the 

new approach are examined in detail. In 2017 in the study of W a n g  et al. [14], the 

fractional gradient descent method was proposed for the backpropagation training of 

neural networks. In particular, the Caputo derivative is used to evaluate the fractional 

order gradient of the error, which is defined as the traditional quadratic energy 

function. The monotonicity and convergence of the approach have been studied in 

detail. In order to examine the performance of the proposed method, two simulations 

have been implemented for four different datasets. Recently, as the areas where 

Fractional order methods are used have started to expand, Fractional order methods 

have been frequently found in application areas such as signal processing [15] and 

image processing [16]. The fact that the fractional order capacitor element, called 

fractal, is used in many applications in the literature, is considered to be an indication 

that fractional memcapacitor will be an element used in many application areas in the 

future. There are various mutator circuits used in the literature to convert the 

fractional order memristor element into fractional order memcapacitor or 

meminductor [17-18]. 

According to studies in the literature, fractional order memristor is not only used 

in learning algorithms, but is also widely used in the creation of Fractional Order 

Neural Networks (FONN). The most common use of fractional order elements in 

FONN applications is the replacement of capacities in the integer order neural 

network circuit with fractional order capacitors [19]. In the study conducted by 

A r e n a, F o r t u n a ,  and P o r t o  [20], a new network structure has been created by 

replacing the cells in the first layer in the Cellular Neural Network structure with 

fractional order cells and this network structure was used as a chaos generator. 

Inclusion of fractional cells in the network with appropriate joining parameters allows 

chaos to start in a simple two-cell system. The studies on FONNs are focused on their 

dynamic analysis and synchronization [21]. Another research topic in the literature is 

the extraction of mathematical proof of limit cycle, chaotic phenomenon formation, 

and investigation of complex dynamics [22-23]. In addition to these studies, many 

FONN structures using fractional order memristor element have been proposed  

[21-24]. This is because FONNs give much more effective results than integer order 

models in applications such as parameter estimates. The reason for this is that these 

structures are characterized by infinite memory. 

In this study, a detailed analysis of a simulator circuit designed to implement a 

previously proposed fractional order memristance equation is given [25]. Thanks to 

the low cost fractional order memristance simulator circuit created, it will be possible 

to realize theoretical learning methods, neural network structures, and signal 

processing algorithms physically. 
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2. Integer order memristance simulator 

 
Fig. 1. Integer order memristance simulator circuit 

In this study, a previously defined integer order memristance simulator  

circuit is taken as starting point [26]. The block-diagram of the reference circuit 

generated by using Current Conveyors II-generation positive type (CCII+) and  

Analog Multiplier (AM) is given in Fig. 1. The defining equations of CCII+ are  

ix(t) = 0, iz(t) = iy(t) and vx(t)= vy(t). The defining equation of AM is vm(t) = kvx(t)vy(t), 

where k is a coefficient in V–1 unit. When this circuit is analysed by using the defining 

equations of CCII+ and AM, the memristance function is obtained in the equation 

(1)   
2
1 2( )

( ) ,
( ) ( )

R R Cv t
M t

i t k t R
    

where φ(t) is the flux on the memristor element. 

The characteristic fingerprint of a memristor element is defined as follows: 

1. When driven by a bipolar periodic signal, the voltage-current plane must 

exhibit a pinched hysteresis loop; 

2. From a certain critical frequency, as the frequency of the applied signal 

increases, the hysteresis lobe decreases, and 

3. When the frequency goes to infinity, the resulting hysteresis loop should turn 

into a single-valued function [27].  
If the values in Table 1 are selected as the element values used in the circuit, 

when the sinusoidal signals at 500 Hz, 1 kHz and 5 kHz frequencies and 1 V 

amplitude are applied to this simulator circuit, the characteristic hysteresis curves as 

in Fig. 2 are obtained. It is seen that these curves provide all three characteristic 

fingerprints of the memristor element. 
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Table 1. Circuit parameters used in Fig.2 integer order memristance simulator circuit 

Element R1 R2 R C k 

Value 47 kΩ 10 kΩ 194 kΩ 100 nF 0.1 V–1 

 

 
Fig. 2. Characteristic v-i hysteresis loops of integer order memristance simulator circuit 

 

The aim of the study is to design a memristance value in fractional order, 

maintaining the basic form of this integer order simulator circuit. 

3. Fractional order memristance equation 

The flux φ(t) is the first order time integral of the element voltage v(t). The Laplace 

transform of this integral operator is  

(2)   
s

sV
s

)(
)(  . 

If it is desired to obtain a fractional order derivative, as seen in the next equation, 

α power of the denominator of the relation (2) is used:  

(3)   
s

sV
sf

)(
)(  , 

where, α is the fractional order.  

Considering the first order memristance equation in (1), it is seen that the 

memristance is inversely proportional to the first order flux φ(t). All parameters 

except flux are constant coefficients, therefore (1) can be considered as M(t)=K/φ(t). 

Since it is desired to obtain a fractional order memristance equation in the same form, 

the aim in this study is to obtain a memristance equation as Mf(t)=K/φf(t) that is 

inversely proportional to fractional order flux and to realize this magnitude. The 

mathematically obtained pinched hysteresis loops are given in Fig. 3, with the input 

frequencies 100 Hz, 250 Hz and 500 Hz, for changing values of α. As seen in Fig 3, 

the mathematically obtained hysteresis loops using this relationship provide the 

fingerprints of the memristor element. 
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(a) α=0.3, K=38,000                                                 (b) α=0.5, K=11,000 

 

 
(c) α=0.8, K=1100 

Fig. 3. Mathematically obtained characteristic pinched v-i hysteresis loops of fractional order 

memristor for changing α values 

4. Fractional Order Memristance Simulator Circuit 

In the circuit in Fig 1, a capacitor element is used to produce the first order flux. In 

order to obtain the fractional order flux with the same structure, it is necessary to add 

a Fractional Order Integrator (FOI) to the circuit. For Laplace transform of the FOI, 

first order approximation can be used:  

(4a)   
sB

Bs

s 




11


, 

(4b)   









1

1
B , when 0<α<1. 

A FOI circuit realizes the first order approximation given in Fig. 4 [28]. Here, 

µ is amplitude scaling coefficient. 

AD844 integrated circuit can be used as CCII+ by leaving the w terminal open 

circuit. In this way, 2 types of active elements are used in the proposed circuit; AD844 
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CFOA integrated circuit and AD633 analog multiplier element. Thus the proposed 

fractional order memristance simulator circuit is obtained as in Fig 5. 
 

 
Fig. 4. FOI circuit 

 

 
(a) Positive type                                         (b) Negative type 

Fig. 5. Proposed fractional order memristance simulator circuit  

 

With a small connection change, the direction of the current flowing through the 

element in the circuit is changed, and the memristance value produced by the 

proposed circuit can be positive or negative. The value of the memristor element 

which is the fourth basic circuit element defined by Chua, will always be positive, 

but negative memristance can also be used for some applications, similar to negative 

resistance. The memristance equation for positive and negative memristance 

simulator circuits in Fig. 5 is  

(5)   𝑀𝑓(𝑡) =  ±
𝑅1

2𝑅2

𝑘𝜑(𝑡)𝑅3𝑅4
. 

As can be seen (5) has the same structure as (1). The memristance and the flux 

are inversely proportional to each other. In other words, mathematical hysteresis 

curves in Fig. 3 can be obtained by using this circuit. 

In order to verify the operation of the proposed circuit, it has been simulated 

using the SPICE macro models of the used active elements. Supply voltages are used  
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±10 V. The element values used in the simulation are given in Table 2. A frequency 

scaling coefficient as kf=(CRβ)–1 is used for the FOI circuits. Obtained simulated 

pinched hysteresis loops are given in Fig. 6 with the input frequencies 100 Hz,  

250 Hz and 500 Hz, for changing values of α. Simulated results are in good agreement 

with the theoretical results. 

Table 2.  Circuit parameters used in Fig. 6 proposed fractional order memristance simulator circuit. 

Element R1 R2 R3 R4 k 

Value 47 kΩ 10 kΩ 10 kΩ 194 kΩ 0.1 V–1 

At FOI circuit 

Element Rz Cz Rx Cx 

Value for α=0.3 100 kΩ 100 nF 54 kΩ 54 nF 

Value for α=0.5 100 kΩ 100 nF 33 kΩ 33 nF 

Value for α=0.8 100 kΩ 100 nF 12 kΩ 12 nF 

 

 
(a) α=0.3                                                                     (b) α=0.5 

 

 
(c) α=0.8 

Fig. 6. Simulated characteristic pinched v-i hysteresis loops of fractional order memristor for changing 

α values 

 

Another important feature of the memristor is the non-volatility feature. To 

show the non-volatility, square waves with a fixed amplitude of 100 mV, a period of 
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1 ms, and a pulse width of 0.5 ms have been applied to the positive and negative 

fractional order memristance simulator circuit, and the change of the memristance 

value has been observed with each pulse. When no voltage is applied to the element, 

it preserves the last memristance value, and when the voltage is applied again, the 

flux value starts to increase, the memristance value decreases inversely. The results 

obtained for the positive and negative simulator circuits are given in Fig. 7. 

 
(a) Positive type fractional order memristance simulator 

 
(b) Negative type fractional order memristance simulator 

Fig. 7. Simulated waveforms when a pulse shaped voltage signal is applied to the simulator circuits 

(α=0.8)  

5. An application example: simplest chaotic circuit 

As shown in Fig. 8, the dynamic behaviour of a 3-element series C-L-Mf circuit is 

examined. Instead of the Mf element, the positive impedance simulator circuit given 

in Fig. 5a is connected as α = 0.5 order.  

 
Fig. 8. Chaotic serial C-L-Mf circuit 
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While analyzing the circuit, using the integer order approximation of FOI, the 

ordinary differential equation set of the circuit was obtained as the first order. There 

are a total of four dynamic elements in the given series circuit, C, L, Cx and Cz. State 

equations of these four dynamic elements are obtained as in the next equations:  

(6)   
𝑑𝑉𝐶

𝑑𝑡
= − 

𝑖𝐿

𝐶
, 

𝑑𝑖𝐿

𝑑𝑡
=

𝑉𝐶

𝐿
−

𝑅1

𝑅3. 𝐿
. 𝑉𝐶𝑥, 

𝑑𝑉𝐶𝑥

𝑑𝑡
=

𝑘𝑅4𝑉𝐶𝑥

2

𝑅𝑥[(𝑅2 + 𝑅3). 𝐶𝑧𝑖𝐿 − 𝑘𝐶𝑥𝑅4𝑉𝐶𝑥
]

−
𝑉𝐶𝑧

𝑘𝑅4𝑉𝐶𝑥

𝑅𝑧[(𝑅2 + 𝑅3). 𝐶𝑧𝑖𝐿 − 𝑘𝐶𝑥𝑅4𝑉𝐶𝑥
]

+ 

+ 
(𝑅2 + 𝑅3). 𝑉𝐶𝐶𝑧

𝐿[(𝑅2 + 𝑅3). 𝐶𝑧𝑖𝐿 − 𝑘𝐶𝑥𝑅4𝑉𝐶𝑥
]

− 

− 
(𝑅2 + 𝑅3). 𝑅1𝑉𝐶𝐶𝑧

𝑅3𝐿[(𝑅2 + 𝑅3). 𝐶𝑧𝑖𝐿 − 𝑘𝐶𝑥𝑅4𝑉𝐶𝑥
]
, 

𝑑𝑉𝐶𝑧

𝑑𝑡
=

𝑉𝐶𝑥

𝑅𝑥𝐶𝑧
−

𝑉𝐶𝑧

𝑅𝑧𝐶𝑧
+

𝐶𝑥

𝐶𝑧
.
𝑑𝑉𝐶𝑥

𝑑𝑡
. 

The first equation, the derivative of C capacitor voltage is obtained from the 

current equation iC+iL=0. The second equation, the derivative of L inductance current 

is obtained from the voltage equation, –vC+vL+vMf = 0. The third and fourth equations 

are represent the fractional memristor element. They are derived from two equation. 

One of them is the iL+iMf =0, when iMf=kvCxvCzR4/R2R3. The other comes from the FOI 

circuit, iz=ix. 

The bifurcation diagram of the proposed equation set is given in Fig. 9.  

 

 
Fig. 9. Bifurcation diagram when L changes in a range of [27-39 mH] 

 

When this equation set is solved for 7 ms with the initial conditions  

[0.4 0.14 0.7 0], obtained phase portraits are given in Fig.10. This element creates 

new attractors with a simple serial circuit. 
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(a) vC-iL 

 

(b) iL-vCx  

 

(c) vC-vCz 

Fig. 10. Mathematically obtained phase portraits 
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6. Conclusion 

In this article, a new fractional-order memristance equation is derived and the 

mathematically obtained characteristic pinched i-v hysteresis loops are verified by 

SPICE simulations. An analog circuit is designed by using the commercially 

available integrated circuits and passive elements to physically perform this 

memristance equation. The designed circuit has floating structure. Both positive and 

negative memristance equations can be obtained with a small connection change in 

the circuit. A simple dynamic circuit example is given to show the behaviour of the 

proposed circuit. A new dynamic system that creates new attractors is examined 

mathematically. 

One of the shortcomings in the literature is that not enough studies have been 

carried out on fractional order memristors. Emulator circuit studies are of great 

importance for the investigation of potential application areas of the memristor 

element since the solid-state fractional memristor has not been produced yet and the 

researchers have had insufficient studies on the implementation of fractional order 

memristor with arbitrary-order lattices, capacitors, memristors and inductors [29-30]. 

When one of the few studies on the fractional order memristor emulator in the 

literature is examined, the circuit proposed by Sanchez-Lopez and colleagues has no 

superiority over the proposed circuit in terms of the number of elements [28]. The 

fracmemristance equation in this study is similar to the integer order memristance 

relation described by HP which includes a constant and a flux-dependent term [31]. 

The simulator in the proposed study contains only a single term inversely 

proportional to the fractional order flux variable. Since it is suitable for positive or 

negative realization, it can be used to emulate an increasing or decreasing structure 

of fracmemistor with a resistance connected in series to the simulator. While 

investigating the use of the memristor element in hardware implementation of 

FONNs and performing fractional operations in learning algorithm circuits, it is 

thought that the proposed simulator circuit can be used. 
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