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Abstract: Offline signature is one of the frequently used biometric traits in daily life 

and yet skilled forgeries are posing a great challenge for offline signature 

verification. To differentiate forgeries, a variety of research has been conducted on 

hand-crafted feature extraction methods until now. However, these methods have 

recently been set aside for automatic feature extraction methods such as 

Convolutional Neural Networks (CNN). Although these CNN-based algorithms often 

achieve satisfying results, they require either many samples in training or pre-trained 

network weights. Recently, Capsule Network has been proposed to model with fewer 

data by using the advantage of convolutional layers for automatic feature extraction. 

Moreover, feature representations are obtained as vectors instead of scalar 

activation values in CNN to keep orientation information. Since signature samples 

per user are limited and feature orientations in signature samples are highly 

informative, this paper first aims to evaluate the capability of Capsule Network for 

signature identification tasks on three benchmark databases. Capsule Network 

achieves 97 96, 94 89, 95 and 91% accuracy on CEDAR, GPDS-100 and MCYT 

databases for 64×64 and 32×32 resolutions, which are lower than usual, 

respectively. The second aim of the paper is to generalize the capability of Capsule 

Network concerning the verification task. Capsule Network achieves average 91, 86, 

and 89% accuracy on CEDAR, GPDS-100 and MCYT databases for 64×64 

resolutions, respectively. Through this evaluation, the capability of Capsule Network 

is shown for offline verification and identification tasks.  

Keywords: Capsule Network, Offline Signature Verification, Offline Signature 

Identification, Convolutional Neural Networks. 

1. Introduction 

Biometrics is a field that uses behavioral and biological traits to identify/verify a 

person. Some of these traits are fingerprint, iris, gait and signature. Due to ease of 

collecting and being non-invasive, signature-based biometric systems are frequently 
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used. These systems are divided into two depending on their collection method: 

online and offline. The first collects dynamic signature features as a sequence of time. 

In this manner, features such as speed, pressure can be extracted. The second uses the 

image after signing is done. Even though online signature is advantageous for 

keeping more details about a signature, the offline signature is the most frequently 

used behavioral trait in daily life [1]. 

In offline signature verification systems, the main goal is to differentiate the 

genuine signatures from forgeries, which can be random, simple or skilled done by a 

forger. Unlike random and simple forgeries, skilled forgeries are not always easy to 

distinguish due to the intra-class variance of genuine signatures shown in Fig. 1. 

Therefore, a detailed investigation of not only local but also global features of 

genuine signatures is required to achieve high verification results. Moreover, 

insufficient prior knowledge about forgeries during training and limited genuine 

samples make the verification process even more challenging.  
 

 
Fig. 1. Two genuine (first two rows) and one forgery signature (last row) samples from CEDAR, 

GPDS and MCYT databases, respectively [2-4] 

Many research has been devoted to extracting the most informative global and, 

in particular local feature representations to differentiate forgeries. These hand-

crafted local descriptors can be texture-based such as gray level co-occurrence matrix 

[5], direction-based such as Histogram of Gradients (HoG) [6], Scale Invariant 

Feature Transform (SIFT) [7] or combination of two or more different local 

descriptors [8]. While research on hand-crafted local descriptors is still in progress, 

recent researches have been conducted by employing automatic feature extraction 

algorithms such as Convolutional Neural Network (CNN). Since data samples per 

user are limited, a few studies are dedicated to using transfer learning instead of 

conducting data augmentation. The works represented in [9, 10] use a pre-trained 

CNN-based model after training the model with another benchmark dataset to make 

weight parameters hard-tuned. After hard-tuning, limited training data from the 

original dataset is used for fine-tuning. In brief, hard tuning is employed to narrow 

down signature feature space while fine tuning is to guarantee optimal decision 

boundaries. Similarly, the model proposed in [11] employs Siamese CNN with an 

inception layer. To cope with the few data samples per user, the model generates 

augmented samples for training. The model achieves 99.15 and 99.82 AUC rates for 

sub CEDAR and MCYT databases. 
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Unlike pre-trained CNN-based models, the method proposed in [12] narrows 

feature space down by only modeling with few data from the original dataset. The 

method, known as Capsule Network, asserts to obtain better feature representations 

than CNN due to its vector feature representations and inner affine transformation 

matrix. The main goal of this paper is to evaluate Capsule Network under different 

input resolutions, such as 64×64, 32×32, which are four to eight times lower than the 

usual signature resolutions for signature verification and identification tasks. This 

evaluation is chosen not only to investigate the detection capability of Capsule 

Network without requiring pre-trained weights under extremely low resolutions but 

also to fasten evaluation times and lessen memory usage.  

The remainder of this paper is organized as follow:  

● Section 2 outlines benchmark datasets and their preprocessing steps. 

● Section 3 explains Capsule Network, evaluation procedures for identification 

and verification tasks and concludes with performance results. 

● Section 4 discusses the results and points out future research directions. 

2. Benchmark datasets and preprocessing steps 

2.1. Benchmark datasets 

In this paper, three frequently used offline signature datasets are employed for 

identification and verification tasks. This subsection includes the contents of these 

datasets in detail. 

2.1.1. CEDAR dataset 

CEDAR database consists of 1320 genuine and 1320 forgery samples in total and 24 

genuine and 24 forgery samples are collected per user among 55 users [2]. 

2.1.2. MCYT dataset 

MCYT database consists of 1125 genuine and 1125 forgery samples in total and 15 

genuine and 15 simulated forgery samples are collected per user among 75 users [4].   

2.1.3. GPDS dataset 

GPDS database consists of 96,000 genuine and 120,000 forgery samples in total and 

24 genuine and 30 simulated forgery samples are collected per user among 4000 users 

[3]. In this paper, we employed only the first 100 users for identification and 

verification tasks. 

2.2. Preprocessing steps 

Before the evaluation procedure, benchmark databases are preprocessed as shown in 

Fig. 2. First, data samples for each dataset are cropped regarding the center of 

signatures to discard unnecessary parts. Then, these data samples are resized to 64×64 

and 32×32 extreme image resolutions. After resizing is done, data samples are 
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converted into binary values with Otsu’s method. As a final step of preprocessing, 

binarizing is done to make background pixels black, foreground pixels white. 

 
Fig. 2. Preprocessing steps for benchmark databases 

3. Capsule Network and experimental setups 

3.1. Capsule Network 

Capsule Network is proposed to obtain more accurate representations of an object 

without requiring samples from different viewpoints [12]. The model structure is 

shown in Fig. 3. As can be seen from the figure, the model consists of four main parts, 

which are convolution layers, Primary Capsules, Signature Capsules and fully 

connected layers, respectively. Firstly, a variety of convolutions is applied to input 

images to extract local features in convolution layers. After getting activations as the 

output of these convolution layers, all these scalar-valued activations are given to 

primary capsules to be grouped into multi-dimensional vector representations.  

 
Fig. 3. Capsule Network model structure for Signature Identification and Verification systems 

Then, these multi-dimensional vectors are multiplied with an affine 

transformation matrix to obtain many different variations of these vectors for better 

modeling. To select the most informative feature vectors, a routing algorithm is 

employed. Before employing this routing algorithm, all transformed feature vectors 

are squashed according to the next equation 
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to make discriminative feature vectors more apparent and to fade less-informative 

ones out. Here vj is the output of a capsule, sj is the total input of a capsule and it also 

includes affine transformed versions of convolution outputs which can be studied in 

detail from [12]. 

After squashing, the most informative vectors are routed to signature capsules 

to form an entity. When the routing algorithm is agreed, signature capsules with one 
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multidimensional capsule per class are created. The new capsule keeps the 

information about all outputs of capsules from the previous layer and keeps absolute 

characteristic features for each class.  

Lastly, these signature capsules are fed into fully connected layers to classify. 

The loss function is designed as a combination of margin loss, which is obtained from 

false predictions, and reconstruction loss. This loss function is calculated according 

to 

(2)   2 2max(0, ) (1 )max(0, ) ,c c c cL T m v T v m       

where L is the loss term for one signature capsule, Tc is a constant that is 1 if the 

signature capsule is the correct, else 0. First-term of loss equation is to calculate 

correct prediction probability while the latter term is employed to calculate incorrect 

prediction probability. 

Overall, Capsule Network brings three main novelty compared to Convolutional 

Neural Network: 

● Inner affine matrix multiplication instead of data augmentation, 

● Vector representation instead of scalar-valued representation, 

● Forwarding only the most informative feature representations by Dynamic 

Routing algorithm instead of forwarding all extracted feature activation values. 

3.2. Experimental setups 

General settings for the identification task are given below.   

● One model is trained for all users in a specific dataset. 

● Only genuine samples are used for training and testing. Train and test 

partitions are set as the first half and the second half of genuine samples per user, 

respectively.  

● Two-fold cross-validation is employed. 

● For training, epoch size and batch size are chosen as 50 and 16, respectively. 

● Image resolutions of 64×64 and 32×32, which are 4-8 times lower than the 

usual, are used for identification tasks [9, 13-15]. 

● Model hyper-parameters such as routing number are chosen as the original 

in [12]. Only convolution kernel sizes and capsule dimensions are modified as given 

in Table 1. 

General settings for the verification task are given below.    

● A model is trained for each user separately, which is also known as the writer-

dependent approach. For example, 55 separate models are created for 55 users in the 

CEDAR dataset and only average accuracy of all models is reported. 

● Genuine as well as random and simple forgery samples, which are treated as 

a separate class, are used for training and testing. Train partition is set as the first half 

of genuine and forgery samples per user while the test partition is set as the remaining 

half. 

● Two-fold cross-validation is employed.  

● For training, epoch size and batch size are chosen as 50 and 16, respectively. 
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● Only image resolution 64×64 is used since the inner variance of genuine 

signatures makes modeling genuine signatures difficult for resolutions smaller such 

as 32×32. 

● Model hyper-parameters such as routing number are chosen as the original 

in [12]. Capsule dimensions are set the same with identification tasks. Only 

convolution layers and kernel sizes are modified separately as given in Table 2 for 

each dataset. 
 

Table 1.  Test accuracies for offline signature identification task 

Resolution Dataset n×n(stride) k×k(stride) Train Test Accuracy, % 

64×64 CEDAR 21×21(1) 21×21(2) 12 12 97 

32×32 CEDAR 13×13(1) 11×11(2) 12 12 96 

64×64 GPDS-100 21×21(1) 21×21(2) 12 12 94 

32×32 GPDS-100 13×13(1) 11×11(2) 12 12 89 

64×64 MCYT 21×21(1) 21×21(2) 8 7 95 

32×32 MCYT 13×13(1) 11×11(2) 8 7 91 

 

Table 2. Test accuracies for offline signature verification task 

Resolution Dataset n×n(stride) k×k(stride) Train Test Average Accuracy, % 

64×64 CEDAR 21×21(1) 21×21(2) 14+14 5+5 91 

64×64 GPDS-100 3×3(1) 5×5(2) 12+15 12+15 86 

64×64 MCYT 21×21(1) 21×21(2) 8+8 7+7 89 

3.3. Experimental results 

This paper is an extended version of [16]. In addition to experiments done on CEDAR 

only, the paper increases the scope over several frequently used signature datasets 

such as MCYT and GPSD-100, which are in different complexity considering 

genuine and forgery samples per user. Therefore, the main goal of this paper is to 

generalize the capability of Capsule Network for signature identification and 

verification tasks.  

All experimental results for offline signature identification tasks are given with 

the information of input resolutions, train-test partitions and convolution kernel sizes 

with stride in Table 1. As can be shown in Table 1, even big convolution kernels are 

good at modeling and separating signatures from one another. Additionally, 

identification at input resolutions of 32×32 achieves average 92% accuracy over three 

benchmark datasets. 
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All experimental results for verification tasks are given in Table 2. As can be 

seen in Table 2, only 64×64 image resolutions are used due to the difficulty level at 

differentiating forgeries from genuine. 

Moreover, genuine and forgery samples in the GPDS-100 dataset seem almost 

identical. Therefore, they require smaller kernels to extract local features in detail for 

verification tasks. Only for this dataset, additional two convolution layers before 

primary capsules are added as 3×3(1) and 5×5(2). Additionally, train and test samples 

are given as genuine+forgery format. 

4. Conclusion 

Capsule Network acquires promising results while using at least four times lower 

resolution than frequently used ones for identification tasks. This indicates that 

Capsule Network is reliable enough to classify signatures and to have a unique ability 

to model local features better under extremely low resolutions. Moreover, results for 

identification tasks reveal that even using bigger sized (around one-third of input 

resolutions) convolutions are useful to separate signatures owing to the modeling 

capability of Capsule Network. 

Similarly, verification results also indicate that the algorithm has a great 

capability to cope with differentiating genuine signatures from forgeries. However, 

unlike identification tasks, high-similarity between genuine and forgery samples 

requires the extraction of low and mid-level features together. Moreover, different 

benchmark datasets make usage of different levels of convolution layers necessary. 

For instance, two-layer kernels are enough to extract enough information in CEDAR 

and MCYT datasets while GPDS-100 dataset requires more. Therefore, convolution 

layers and convolution kernel sizes are arranged for that requirement for all datasets. 

For future works, there are a couple of things to be taken into consideration for 

offline signature identification and verification tasks. These are: 

● Different model combinations for Capsule Network may be tried, such as 

modifying the stride, convolution layers, etc. Lastly, data augmentation can be 

attempted. 

● Capsule Network and state-of-art CNN models such as VGG-16 can be 

compared for high input resolutions using the same convolution layers to investigate 

modeling capability of Capsule Network in detail. 

● For verification tasks, performance comparison can be generalized with the 

use of adversarial attacks, such as adding noise to genuine signatures. 

● Visualizing feature representations before and after capsule layers can be 

done to increase the explainability of capsule-based feature modeling. 

● Evaluation metrics such as Equal Error Rate (EER), DET curves can be 

employed. 

In conclusion, the main point of this paper is to show Capsule Network’s 

advantages in terms of data representation, using less data for signature identification 

and verification tasks and to encourage a community that is interested in online 

signature verification to think one step further to obtain better feature representations 

for the future.  
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