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Abstract: In this paper we present two applications of a new Belief Function-based Inter-

Criteria Analysis (BF-ICrA) approach for the assessment of redundancy of criteria 

involved in Multi-Criteria Decision-Making (MCDM) problems. This BF-ICrA method 

allows to simplify the original MCDM problem by suppressing redundant criteria (if any) 

and thus diminish the complexity of MCDM problem. This approach is appealing for 

solving large MCDM problems whose solution requires the fusion of many belief 

functions. We show how this approach can be used in two distinct fields of applications: The 

GPS surveying problem, and the car selection problem.  
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1. Introduction 

In a Multi-Criteria Decision-Making (MCDM) problem we consider a set of 

alternatives (or objects) 𝐴 ≜ {𝐴1,  𝐴2, … , 𝐴𝑀} (𝑀 > 2) and a set of criteria  

𝐶 ≜ {𝐶1, 𝐶2, … , 𝐶𝑁}  (𝑁 ≥ 1). We search for the best alternative 𝐴∗ given the 

available information expressed by a 𝑀 × 𝑁 score matrix (also called benefit or 

payoff matrix) 𝑆 ≜ [𝑆𝑖𝑗 = 𝐶𝑗(𝐴𝑖)], and (eventually) the importance factor 𝜔𝑗 ∈ [0, 1] 

of each criterion 𝐶𝑗 with ∑ 𝜔𝑗 = 1𝑁
𝑗=1 . The set of normalized weighting factors is 

denoted by 𝜔 ≜ {𝜔1, 𝜔2, … , 𝜔𝑁}. Depending on the context of the MCDM problem, 

the score 𝑆𝑖𝑗 of each alternative  𝐴𝑖 with respect to each criteria 𝐶𝑗 can be interpreted 

either as a cost (i.e., an expense), or as a reward (i.e., a benefit). By convention and 

without loss of generality (Because it suffices to multiply the scores values by −1 to 

reverse the preference ordering) we will always interpret the score as a reward having 

monotonically increasing preference. Thus, the best alternative 𝐴𝑗
∗ for a given criteria 

𝐶𝑗 will be the one providing the highest reward/benefit. 
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The MCDM problem is not easy to solve because the scores are usually 

expressed in different (physical) units and different scales. This necessitates a choice 

of score/data normalization yielding rank reversal problems [1, 2]. Usually there is 

no same best alternative choice 𝐴∗ for all criteria, so a compromise has to be 

established to provide a reasonable and acceptable solution of the MCDM problem 

for decision-making support. 

Many MCDM methods exist, see references in [3]. Most popular methods are 

AHP (Analytic Hierarchy Process) [4] ELECTRE (ELimination Et Choix Traduisant 

la REalité) [5], TOPSIS (Technique for Order Preference by Similarity to Ideal 

Solution) [6, 7]. In 2016 and 2017, we did develop BF-TOPSIS methods [3, 8] based 

on Belief Functions (BF) to improve the original TOPSIS approach to avoid data 

normalization and to deal also with imprecise score values as well. It appears however 

that the complexity of these new BF-TOPSIS methods can become a bottleneck for 

their use in large MCDM problems due to the fusion step of basic belief assignments 

required for the implementation of the BF-TOPSIS. That is why a simplification of 

the MCDM problem (if possible) is very welcome in order to save computational 

time and resources. This is the motivation of the present work. 

For this aim we propose a new Inter-Criteria Analysis (ICrA) based on belief 

functions for identifying and estimating the possible degree of agreement (i.e., 

redundancy) between some criteria driven from the data (score values). This permits 

to remove all redundant criteria of the original MCDM problem and thus solving a 

simplified (almost) equivalent MCDM problem faster and at lower computational 

cost. ICrA has been developed originally by A t a n a s s o v, M a v r o v  and 

A t a n a s s o v a  [9], A t a n a s s o v, A t a n a s s o v a and G l u h c h e v [10] and 

A t a n a s s o v et al. [11], based on Intuitionistic Fuzzy Sets [12], and it has been 

applied in different fields like medicine [13-15], optimization [16-20] workforce 

planning [21], competitiveness analysis [22], radar detection [23], ranking [24-27], 

etc. In this paper we improve ICrA approach thanks to belief functions introduced by 

Shafer in [28] from original Dempster’s works [29]. We will refer it as BF-ICrA 

method in the sequel. 

After a short presentation of basics of belief functions in Section 2, we present 

Atanassov’s ICrA method in Section 3 and discuss its limitations. In Section 4 we 

present the new BF-ICrA approach based on a new construction of Basic Belief 

Assignment (BBA) matrix from the score matrix and a new establishment of Inter-

Criteria belief matrix. In Section 5 a method of simplification of MCDM using BF-

ICrA is proposed. Two distinct applications of BF-ICrA are presented in Section 6 

with concluding remarks in Section 7. 

2. Basics of the theory of belief functions 

To follow classical notations of the theory of belief functions, also called Dempster-

Shafer Theory (DST) [28], we assume that the answer (i.e., the solution, or the 

decision to take) of the problem under concern belongs to a known finite discrete 

frame of discernments (FoD) Θ ≜ {𝜃1,  𝜃2, … , 𝜃𝑛} with 𝑛 > 1, and where all elements 

of Θ are exclusive. The set of all subsets of  Θ (including empty set  ∅ and Θ) is the 
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power-set of Θ denoted by 2Θ. A BBA (or mass function) associated with a given 

source of evidence is defined in [28] as the mapping 𝑚(⋅): 2Θ → [0, 1] satisfying 

𝑚(∅) = 0 and ∑ 𝑚(𝐴) = 1.𝐴∈2Θ  The quantity 𝑚(𝐴) is called the mass of 

𝐴 committed by the source of evidence. Belief and plausibility functions are usually 

interpreted respectively as lower and upper bounds of unknown (possibly subjective) 

probability measure [29]. They are defined by  

(1)   Bel(𝐴) ≜ ∑ 𝑚(𝐵)𝐵⊆𝐴,𝐵∈2Θ   and   Pl(𝐴) ≜ 1 − Bel(�̅�), 

where the symbol ≜  means equal by definition. 

If 𝑚(𝐴) > 0, 𝐴 is called a focal element of 𝑚(⋅). When all focal elements are 

singletons then 𝑚(⋅) is called Bayesian BBA [28] and its corresponding Bel(∙) 

function is homogeneous to a probability measure. The vacuous BBA, or VBBA for 

short, representing a totally ignorant source is defined as  𝑚𝜗(Θ) = 1. The main 

challenge of the decision-maker consists to combine efficiently the possible multiple 

BBAs 𝑚𝑠(∙) given by 𝑠 > 1 distinct sources of evidence to obtain a global 

(combined) BBA, and to make a final decision from it. Historically the combination 

of BBAs is accomplished by Dempster’s rule proposed by Shafer in DST. Because 

Dempster’s rule presents several serious problems (insensitivity to the level of 

conflict between sources in some cases, inconsistency with bounds of conditional 

probabilities when used for belief conditioning, dictatorial behaviour, counter-

intuitive results), many fusion rules have been proposed in the literature as alternative 

to Dempster’s rule, see [30, Vol. 2] for a detailed list of fusion rules. We will not 

detail here all the possible combination rules but just mention that the Proportional 

Conflict Redistribution rule No 6 (PCR6) proposed by Martin and Osswald in [30] 

(Vol. 3) is one of the most serious alternative rule for BBA combination available so 

far. 

3. Atanassov’s Inter-Criteria Analysis (ICrA) 

ICrA approach is based on a 𝑀 × 𝑁 score matrix  𝑆 ≜ [𝑆𝑖𝑗 = 𝐶𝑗(𝐴𝑖), 𝑖 = 1, … , 𝑀,

𝑗 = 1, … , 𝑁] (index matrix by Atanassov in [31]), and intuitionistic fuzzy pairs [12] 

including two membership functions 𝜇(∙) and 𝜈(∙). Mathematically, an Intuitionistic 

Fuzzy Set (IFS) 𝐴 is denoted by 𝐴 ≜ {(𝑥, 𝜇𝐴(𝑥), 𝜗𝐴(𝑥))|𝑥 ∈ 𝐸} where 𝐸 is the set of 

possible values of 𝑥 to the set 𝐴, 𝜇𝐴(𝑥) ∈ [0, 1]defines the membership of 𝑥 to the 

set 𝐴,  and 𝜗𝐴(𝑥) ∈ [0, 1] defines the non-membership of  𝑥 to the set 𝐴 with the 

restriction  0 ≤ 𝜇𝐴(𝑥) + 𝜗𝐴(𝑥) ≤ 1 . The ICrA method consists in building an  

𝑁 × 𝑁 Inter-Criteria (IC) matrix from the score matrix 𝑆. The elements of the IC 

matrix consist of all intuitionistic fuzzy pairs (𝜇𝑗𝑗′ , 𝜗𝑗𝑗′ ) whose components express 

respectively the degree of agreement and the degree of disagreement between criteria 

𝐶𝑗 and 𝐶𝑗′  for  𝑗,  𝑗′ ∈ {1, 2, … , 𝑁}. For a given column  𝑗 (i.e., criterion 𝐶𝑗), it is 

always possible to compare with >, < and  =  operators all the scores 𝑆𝑖𝑗 for  

𝑖 = 1, 2, … , 𝑀 because the scores of each column are expressed in the same unit. The 

construction of IC matrix can be used to search relations between the criteria because 

the method compares homogeneous data relatively to a same column. A t a n a s s o v  

et al. [32]  prescribes to normalize the score matrix before applying ICrA as follows: 
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(2)   𝑆𝑖𝑗
norm =

𝑆𝑖𝑗−𝑆𝑗
min

𝑆𝑗
max−𝑆𝑗

min. 

In our new Belief Function based ICrA approach it is not necessary to apply a 

score matrix normalization because each column of the score matrix represents the 

values of one and the same criterion for different alternatives, and the criterion values 

are expressed with the same unit (e.g.,  m, m2, s, kg, or  €, etc.) from which belief 

functions are established without regards to the specific unit of each criterion. 

3.1. Construction of inter-criteria matrix 

The construction of the  𝑁 × 𝑁  IC matrix, denoted by K is based on the pairwise 

comparisons between every two criteria along all evaluated alternatives. We use K 

because it corresponds to the first letter of word Kriterium, meaning criteria in 

German. The letter C is already used. 

Let  𝐾𝑗𝑗′
𝜗   be the number of cases in which the inequalities 𝑆𝑖𝑗 > 𝑆𝑖′𝑗 and 

 𝑆𝑖𝑗′ > 𝑆𝑖′𝑗′  hold simultaneously, and let 𝐾𝑗𝑗′
𝜗  be the number of cases in which the 

inequalities  𝑆𝑖𝑗 > 𝑆𝑖′𝑗  and    𝑆𝑖𝑗′ < 𝑆𝑖′𝑗′   hold simultaneously. Because the total 

number of comparisons between the alternatives is 𝑀(𝑀 − 1)/2 then one always has 

necessarily 

(3)   0 ≤ 𝐾
𝑗𝑗′
𝜇

+ 𝐾𝑗𝑗′
𝜗 ≤

𝑀(𝑀−1)

2
, 

or equivalently after the division by 
𝑀(𝑀−1)

2
> 0, 

(4)   0 ≤
2𝐾

𝑗𝑗′
𝜇

𝑀(𝑀−1)
+

2𝐾
𝑗𝑗′
𝜗

𝑀(𝑀−1)
≤ 1. 

This inequality permits to define the elements of 𝑁 × 𝑁 IC matrix 𝐊 = [𝐾𝑗𝑗′] 

as Intuitionistic Fuzzy (IF) pairs 𝐾𝑗𝑗′ = (𝜇𝑗𝑗′,𝜗𝑗𝑗′) where 

(5)   𝜇𝑗𝑗′ ≜
2𝐾

𝑗𝑗′
𝜇

𝑀(𝑀−1)
, and 𝜗𝑗𝑗′ ≜

2𝐾
𝑗𝑗′
𝜗

𝑀(𝑀−1)
, 

where 𝜇𝑗𝑗′  measures the degree of agreement between criteria  𝐶𝑗  and 𝐶𝑗′ , and 𝜗𝑗𝑗′   

measures their degree of disagreement. By construction the IC matrix K is always a 

symmetric matrix. The computation of  𝐾
𝑗𝑗′
𝜇

 and 𝐾𝑗𝑗′
𝜗  can be done explicitly thanks to 

Atanassov’s formulas [32] 

(6)   𝐾
𝑗𝑗′
𝜇

 = ∑ ∑ [𝑀
𝑖′=𝑖+1

𝑀−1
𝑖=1 sgn(𝑆𝑖𝑗 − 𝑆𝑖′𝑗)sgn(𝑆𝑖𝑗′ − 𝑆𝑖′𝑗′) + 

+sgn(𝑆𝑖′𝑗 −   𝑆𝑖𝑗)sgn(𝑆𝑖′𝑗′ − 𝑆𝑖𝑗′)] 

and 

(7)   𝐾𝑗𝑗′
𝜐 = ∑ ∑ [𝑀

𝑖′=𝑖+1
𝑀−1
𝑖=1 sgn(𝑆𝑖𝑗 − 𝑆𝑖′𝑗)sgn(𝑆𝑖′𝑗′ − 𝑆𝑖𝑗′) + 

+sgn(𝑆𝑖′𝑗 −   𝑆𝑖𝑗)sgn(𝑆𝑖𝑗′ − 𝑆𝑖′𝑗′)], 

where the signum function sgn(. ) used by Atanassov is defined as  

(8)   sgn(𝑥) = {
1  if 𝑥 > 0,
0  if 𝑥 ≤ 0.

 

Actually the values of 𝐾
𝑗𝑗′
𝜇

 and 𝐾𝑗𝑗′
𝜗  depend on the choice of sgn(𝑥) function. 

For instance if we use  sqn(𝑥) = 1  if  𝑥 ≥ 0  and  sqn(𝑥) = 0  if 𝑥 < 0 we will 
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obtain, in general, other 𝐾
𝑗𝑗′
𝜇

 and 𝐾𝑗𝑗′
𝜗  values. That is why in [21, 33] the authors 

propose different algorithms implemented under Java in an ICrA software yielding 

different 𝐾
𝑗𝑗′
𝜇

 and 𝐾𝑗𝑗′
𝜗  values for making the analysis and to reduce the dimension 

(complexity) of the original MCDM problem. 

3.2. Inter-criteria analysis 

Once the Inter-Criteria matrix 𝐾 = [𝐾𝑗𝑗′] of intuitionistic fuzzy pairs is calculated  

one needs to analyse it to decide which criteria 𝐶𝑗 and 𝐶𝑗′  are in strong agreement (or 

positive consonance) reflecting the correlation between 𝐶𝑗 and 𝐶𝑗′  in strong 

disagreement (or negative consonance) reflecting non correlation between 𝐶𝑗 and 𝐶𝑗′ , 

or in dissonance reflecting the uncertainty situation where nothing can be said about 

the non-correlation or the correlation between 𝐶𝑗 and  𝐶𝑗′ . If one wants to identify the 

set of criteria 𝐶𝑗′  for 𝑗′ ≠ 𝑗 that are strongly correlated with 𝐶𝑗 then we can sort  𝜇𝑗𝑗′  

values is descending order to identify those in strong positive consonance with 𝐶𝑗. In 

[25, 26] the authors propose a qualitative scale to refine the levels of consonance and 

dissonance and for helping the decision making procedure. A dual approach based on 

𝜗𝑗𝑗′  values can be made to determine the set of criteria that are not correlated with 𝐶𝑗. 

Another approach [10, 27] proposes to define two thresholds 𝛼, 𝛽 ∈ [0, 1] for the 

positive and negative consonance respectively against which the components  𝜇𝑗𝑗′  

and 𝜗𝑗𝑗′  of 𝐾𝑗𝑗′ = (𝜇𝑗𝑗′ , 𝜗𝑗𝑗′) will be compared. The correlations between the criteria 

𝐶𝑗 and 𝐶𝑗′  are called “positive consonance”, “negative consonance” or “dissonance” 

depending on their  𝜇𝑗𝑗′  and 𝜗𝑗𝑗′  values with respect to chosen thresholds 𝛼 and 𝛽, 

see [22] for details. More precisely, 𝐶𝑗 and 𝐶𝑗′  are in 

 (𝛼, 𝛽)  positive consonance (i.e., correlated): 

If  𝜇𝑗𝑗′ > 𝛼 and 𝜗𝑗𝑗′ < 𝛽, 

 (𝛼, 𝛽)  negative consonance (i.e., no correlated): 

If  𝜇𝑗𝑗′ < 𝛽 and 𝜗𝑗𝑗′ > 𝛼, 

 (𝛼, 𝛽)  dissonance (i.e., full uncertainty) otherwise. 

At the beginning of ICrA development it was not very clear how these 

Intuitionistic Fuzzy (IF) pairs (𝜇𝑗𝑗′ , 𝜗𝑗𝑗′) had to be used and that is why Atanassova 

[34, 35] proposed to handle both components of the IF pair. For this, she interpreted 

pairs = (𝜇𝑗𝑗′ , 𝜗𝑗𝑗′) as points located in the elementary TFU triangle, where the point 

T of coordinate (1, 0) represents the maximal positive consonance (i.e., the true 

consonance), the point F with coordinate (0, 1) represents the maximal negative 

consonance (i.e., the falsity), and the point U with coordinates (0, 0) represents the 

maximal dissonance (i.e., the uncertainty). From this interpretation it becomes easy 

to identify the top of consonant IF pairs (𝜇𝑗𝑗′ , 𝜗𝑗𝑗′ ) that fall in bottom right corner of 

TFU-triangle limited by vertical line from x-axis 𝑥 = 𝛼 and horizontal line from  

y-axis 𝑦 = 𝛽. The set of consonant IF pairs are then ranked according to their 

Euclidean distance 𝑑𝐶𝑗𝐶
𝑗′

𝑇  with respect to T point of coordinate (1, 0) defined by 
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(9)   𝑑𝐶𝑗𝐶
𝑗′

𝑇 = 𝑑 ((1, 0), (𝜇𝑗𝑗′ , 𝜗𝑗𝑗′)) = √(1 − 𝜇𝑗𝑗′ )
2 + 𝜗𝑗𝑗′

2 . 

In the MCDM context only the criteria that are negatively consonant (or 

uncorrelated) must be kept for solving MCDM and saving computational resources 

because they have no (or only very low) dependency with each other, so that each 

uncorrelated criterion provides useful information. The set of criteria that are 

positively consonant (if any), called the consonant set, indicates somehow a 

redundancy of information between the criteria belonging to it in term of decisional 

behaviour. Therefore all these positively consonant criteria must be represented by 

only one representative criterion that will be kept in the MCDM analysis to simplify 

MCDM problem. Also all the criteria that are deemed strongly dissonant (if any) 

could be taken out of the original MCDM problem because they only introduce 

uncertainty in the decision-making. 

3.3. General comments on ICrA 

Although appealing at the first glance, the classical ICrA approach induces the 

following comments: 

 The IF values 𝜇𝑗𝑗′ , and 𝜗𝑗𝑗′  can be easily interpreted in the belief function 

framework. Indeed, the belief and plausibility of (positive) consonance between 

criteria 𝐶𝑗 and 𝐶𝑗′  can be directly linked to the values 𝜇𝑗𝑗′  and 𝜗𝑗𝑗′by  

taking Bel𝑗𝑗′(𝜃) = 𝜇𝑗𝑗′  and Pl𝑗𝑗′(𝜃) = 1 − 𝜗𝑗𝑗′ . Moreover 𝑈𝑗𝑗′(𝜃) =

Pl𝑗𝑗′(𝜃)−Bel𝑗𝑗′(𝜃) = 1 − 𝜗𝑗𝑗′ − 𝜇𝑗𝑗′  represents the dissonance (the uncertainty 

about the correlation) of the criteria 𝐶𝑗 and 𝐶𝑗′ . Here the proposition 𝜃 means: the 

criteria 𝐶𝑗 and 𝐶𝑗′  are totally positively consonant (i.e., totally correlated) and the 

frame of discernment is defined as Θ ≜ {𝜃, �̅�}, where �̅� means: the criteria 𝐶𝑗 and 𝐶𝑗′  

are totally negatively consonant (uncorrelated). From this, one can define any BBA 

𝑚𝑗𝑗′(𝜃), 𝑚𝑗𝑗′(�̅�) and 𝑚𝑗𝑗′(𝜃 ∪ �̅�) of 2Θ by: 

(10)   𝑚𝑗𝑗′(𝜃) = 𝜇𝑗𝑗′ , 

(11)    𝑚𝑗𝑗′(�̅�) = 𝜗𝑗𝑗′ , 

(12)    𝑚𝑗𝑗′(𝜃 ∪ �̅�) = 1 − 𝜇𝑗𝑗′ − 𝜗𝑗𝑗′ . 

 The construction of 𝜇𝑗𝑗′ and 𝜗𝑗𝑗′  proposed in the classical ICrA is disputable 

because it is only based on counting the valid “>” or “<” inequalities but it doesn’t 

exploit how bigger and how smaller the scores values are in each comparison done 

in the construction of the Inter-Criteria Matrix K. Therefore the construction of 

𝜇𝑗𝑗′ and 𝜗𝑗𝑗′  is actually only a very crude method to estimate IF pairs. 

 The construction of the Inter-Criteria Matrix K is in fact not unique as 

reported in [33]. This will yield different results in general. 

 The exploitation of the ICrA method depends on the choice of 𝛼 and 𝛽 

thresholds that will impact the final result. 

 The classical ICrA method cannot deal directly with imprecise or missing 

score values. 
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4. A new ICrA method based on belief functions 

We present in this section a new ICrA method, called BF-ICrA for short, based on 

belief functions that circumvents most of the aforementioned drawbacks of classical 

ICrA. Here we show how to get more precisely the Inter-Criteria Belief Matrix and 

how to exploit it for MCDM simplification. 

4.1. Construction of BBA matrix from the score matrix 

From any non-zero score matrix 𝑆 = [𝑆𝑖𝑗], we can construct the 𝑁 × 𝑁 BBA matrix 

𝑀 = [𝑚𝑖𝑗(. )] as follows: 

(13)    𝑚𝑖𝑗(𝐴𝑖) = Bel𝑖𝑗(𝐴𝑖), 

(14)   𝑚𝑖𝑗(𝐴�̅�) = Bel𝑖𝑗(𝐴�̅�) = 1 − Pl𝑖𝑗(𝐴𝑖), 

(15)   𝑚𝑖𝑗(𝐴𝑖 ∪ 𝐴�̅�) = Pl𝑖𝑗(𝐴𝑖) – Bel𝑖𝑗(𝐴𝑖). 

Assuming 𝐴max
𝑗

≠ 0 and  𝐴min
𝑗

≠ 0, we take:  

If 𝐴max
𝑗

= 0 then Bel𝑖𝑗(𝐴𝑖) = 0  and if 𝐴min
𝑗

= 0 then Pl𝑖𝑗(𝐴𝑖) = 1, 

(16)   Bel𝑖𝑗(𝐴𝑖) ≜ Sup𝑗(𝐴𝑖) /𝐴max
𝑗

, 

(17)   Bel𝑖𝑗(𝐴�̅�) ≜ Inf𝑗(𝐴𝑖) /𝐴min
𝑗

, 

where 𝐴max
𝑗

≜ max𝑖Sup𝑗(𝐴𝑖) and 𝐴min
𝑗

≜ min𝑖Inf𝑗(𝐴𝑖) and with 

(18)   Sup𝑗(𝐴𝑖) ≜ ∑ |𝑆𝑖𝑗 − 𝑆𝑘𝑗|𝑘∈{1,…,𝑀}|𝑆𝑘𝑗≤𝑆𝑖𝑗
, 

(19)   Inf𝑗(𝐴𝑖) ≜ ∑ |𝑆𝑖𝑗 − 𝑆𝑘𝑗|.𝑘∈{1,…,𝑀}|𝑆𝑘𝑗≥𝑆𝑖𝑗
 

The entire justification of these formulas can be found in our previous works 

[3]. For another criterion 𝐶𝑗′  and the 𝑗′-th column of the score matrix we will obtain 

another set of BBA values 𝑚𝑖𝑗′(. ). Applying this method for each column of the 

score matrix we are able to compute the BBA matrix 𝑀 = [𝑚𝑖𝑗(. )] each component 

of which is in fact a triplet (𝑚𝑖𝑗(𝐴𝑖),  𝑚𝑖𝑗(𝐴�̅�), 𝑚𝑖𝑗(𝐴𝑖 ∪ 𝐴�̅�)) of BBA values in  

[0, 1] such that 𝑚𝑖𝑗(𝐴𝑖) + (𝐴�̅�) + 𝑚𝑖𝑗(𝐴𝑖 ∪ 𝐴�̅�) = 1 for all 𝑖 = 1, … , 𝑀 and                 

𝑗 = 1, … , 𝑁. 

4.2. Construction of Inter-Criteria Matrix from BBA matrix 

The next step of BF-ICrA approach is the construction of the 𝑁 × 𝑁 Inter-Criteria 

Matrix 𝐾 = [𝐾𝑗𝑗′] from 𝑀 × 𝑁 BBA matrix 𝑀 = [𝑚𝑖𝑗(. )], where elements 𝐾𝑗𝑗′  

corresponds to the BBA (𝑚𝑗𝑗′(𝜃), 𝑚𝑗𝑗′(�̅�), 𝑚𝑗𝑗′(𝜃 ∪ �̅�))   about positive consonance 

𝜃, negative consonance �̅�, and uncertainty between criteria 𝐶𝑗 and 𝐶𝑗𝑗′ , respectively. 

The principle of construction of the triplet 𝐾𝑗𝑗′ = (𝑚𝑗𝑗′(𝜃), 𝑚𝑗𝑗′(�̅�), 𝑚𝑗𝑗′(𝜃 ∪ �̅�)) 

is based on two steps that will be detailed in the sequel: 

Step 1. For each alternative 𝐴𝑖, we first compute the BBA 

(𝑚𝑖𝑗(𝐴𝑖), 𝑚𝑖𝑗(𝐴�̅�), 𝑚𝑖𝑗(𝐴𝑖 ∪ 𝐴�̅�)) for any two criteria 𝑗, 𝑗′ ∈ {1, … , 𝑁}. 

Step 2. The BBA (𝑚𝑗𝑗′(𝜃), 𝑚𝑗𝑗′(�̅�), 𝑚𝑗𝑗′(𝜃 ∪ �̅�)) is then obtained by the 

combinations of the M  BBA 𝑚𝑗𝑗′
𝑖 . 
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We present the details of each step of BF-ICrA method. 

Step 1. Construction of BBA 𝒎𝒋𝒋′
𝒊 (. ). The mass of belief 𝑚𝑗𝑗′

𝑖 (θ)represents 

the degree of agreement between the BBA 𝑚𝑖𝑗(. ) and 𝑚𝑗𝑗′(. ) for the alternative 𝐴𝑖, 

and 𝑚𝑗𝑗′
𝑖 (�̅�) represents the degree of disagreement between 𝑚𝑖𝑗(. ) and 𝑚𝑗𝑗′(. ). The 

mass 𝑚𝑗𝑗′
𝑖 (𝜃 ∪ �̅�) is the degree of uncertainty about the agreement (or disagreement) 

between 𝑚𝑖𝑗(. ) and 𝑚𝑗𝑗′(. ) for the alternative 𝐴𝑖,The calculation of 𝑚𝑗𝑗′
𝑖 (θ) could 

be envisaged in several manners. 

The first manner would consist to consider the degree of conflict [28]  

𝑘𝑗𝑗′
𝑖 ≜ ∑ 𝑚𝑖𝑗(𝑋)𝑋,𝑌⊆Θ|𝑋∩𝑌=∅ 𝑚𝑖𝑗′(𝑌) and consider the Bayesian BBA  

𝑚𝑗𝑗′
𝑖 (θ) = 1 − 𝑘𝑗𝑗′   

𝑖 , 𝑚𝑗𝑗′
𝑖 (�̅�) = 𝑘𝑗𝑗′   

𝑖  and 𝑚𝑗𝑗′
𝑖 (𝜃 ∪ �̅�) = 0. Instead of using 

Shafer’s conflict, the second manner would consist of using a normalized distance 

𝑑𝑗𝑗′
𝑖 = 𝑑(𝑚𝑖𝑗, 𝑚𝑗𝑗′) to measure the closeness between 𝑚𝑗𝑗′  and 𝑚𝑗𝑗′) and then 

consider the Bayesian BBA modelling defined by 𝑚𝑗𝑗′
𝑖 (θ) = 1 − 𝑑𝑗𝑗′

𝑖 ,  

𝑚𝑗𝑗′
𝑖 (�̅�) = 𝑑𝑗𝑗′

𝑖  and 𝑚𝑗𝑗′
𝑖 (𝜃 ∪ �̅�) = 0. These two manners however are not very 

satisfying because they always set to zero the degree of uncertainty between the 

agreement and disagreement of the BBA, and the second manner depends also on the 

choice of the distance metric. So, we propose a more appealing third manner of the 

BBA modelling of 𝑚𝑗𝑗′
𝑖 (θ), 𝑚𝑗𝑗′

𝑖 (�̅�)  and 𝑚𝑗𝑗′
𝑖 (𝜃 ∪ �̅�). For this, we consider two 

Sources of Evidences (SoE) indexed by 𝑗 and 𝑗′ providing the BBA 𝑚𝑖𝑗(. )  

and 𝑚𝑗𝑗′(. ) defined on the simple FoD {𝐴𝑖,  𝐴𝑖
̅̅̅̅ } and denoted  

𝑚𝑖𝑗 = [𝑚𝑖𝑗(𝐴𝑖), 𝑚𝑖𝑗(𝐴�̅�), 𝑚𝑖𝑗(𝐴𝑖 ∪ 𝐴�̅�)]  and  𝑚𝑗𝑗′ = [𝑚𝑗𝑗′(𝐴𝑖), 𝑚𝑗𝑗′(𝐴�̅�), 

𝑚𝑗𝑗′(𝐴𝑖 ∪ 𝐴�̅�)]. We also denote Θ = {𝜃, �̅�} the FoD about the relative state of the two 

SoE, where 𝜃 means that the two SoE agree, �̅� means that they disagree and 𝜃 ∪ �̅� 

means that we don’t know. Then the BBA modelling is based on the important 

remarks: 

 Two SoE are in total agreement if both commit their maximum belief mass 

to the element 𝐴𝑖 or to element �̅�𝑖 . So they perfectly agree if 𝑚𝑖𝑗(𝐴𝑖) = 𝑚𝑖𝑗′(𝐴𝑖) =

1, or if 𝑚𝑖𝑗(�̅�𝑖) = 𝑚𝑖𝑗′(�̅�𝑖) = 1. Therefore the pure degree of agreement (or positive 

consonance according Atanassov’s terminology) between two sources is modeled by 

(20)    𝑚𝑗𝑗′
𝑖 (θ) = 𝑚𝑖𝑗(𝐴𝑖)𝑚𝑖𝑗′(𝐴𝑖) + 𝑚𝑖𝑗(�̅�𝑖)𝑚𝑖𝑗′(�̅�𝑖). 

 Two SoE are in total disagreement if each one commits its maximum mass 

of belief to one element and the other to its opposite, that is if one has 𝑚𝑖𝑗(𝐴𝑖) = 1 

and 𝑚𝑖𝑗′(�̅�𝑖) = 1, or if 𝑚𝑖𝑗(�̅�𝑖) = 1 and 𝑚𝑖𝑗′ (𝐴𝑖) Hence the pure degree of 

disagreement (or negative consonance according Atanassov’s terminology) between 

two sources is modelled by 

(21)    𝑚𝑗𝑗′
𝑖 (θ̅) = 𝑚𝑖𝑗(𝐴𝑖)𝑚𝑖𝑗′(�̅�𝑖) + 𝑚𝑖𝑗(�̅�𝑖)𝑚𝑖𝑗′(𝐴𝑖). 

 All possible remaining products between components of 𝑚𝑖𝑗 and 𝑚𝑖𝑗′  reflect 

the part of uncertainty we have about the SoE (i.e., we don’t know if they agree or 

disagree). Hence the degree of uncertainty between the two sources is modelled by 
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(22)   𝑚𝑗𝑗′
𝑖 (𝜃 ∪ �̅�) = 𝑚𝑖𝑗(𝐴𝑖)𝑚𝑖𝑗′(𝐴𝑖 ∪ 𝐴�̅�) + 𝑚𝑖𝑗(�̅�𝑖)𝑚𝑖𝑗′(𝐴𝑖 ∪ 𝐴�̅�)+ 

+𝑚𝑖𝑗(𝐴𝑖 ∪ 𝐴�̅�)𝑚𝑖𝑗′(𝐴𝑖) + 𝑚𝑖𝑗(𝐴𝑖 ∪ 𝐴�̅�)𝑚𝑖𝑗′(𝐴�̅�) + 𝑚𝑖𝑗(𝐴𝑖 ∪ 𝐴�̅�)𝑚𝑖𝑗′(𝐴𝑖 ∪ 𝐴�̅�). 

By construction 𝑚𝑗𝑗′
𝑖 (. ) = 𝑚𝑗′𝑗

𝑖 (. ), hence this BBA modeling permits to build 

a set of M symmetrical Inter-Criteria Belief Matrices (ICBM) 𝐾𝑖=[𝐾𝑗𝑗′
𝑖 ] of dimension 

𝑁 × 𝑁 relative to each alternative 𝐴𝑖 whose components 𝐾𝑗𝑗′
𝑖  correspond to the triplet 

of BBA values 𝑚𝑗𝑗′
𝑖 = (𝑚𝑗𝑗′

𝑖 (𝜃), 𝑚𝑗𝑗′
𝑖 (�̅�), 𝑚𝑗𝑗′

𝑖 (𝜃 ∪ �̅�)) modeling the belief of 

agreement and of disagreement between 𝐶𝑗 and 𝐶𝑗′  based on 𝐴𝑖 . One has also 

 𝑚𝑗𝑗′
𝑖 (θ),  𝑚𝑗𝑗′

𝑖 (θ̅), 𝑚𝑗𝑗′
𝑖 (𝜃 ∪ �̅�)  ∈ [0,1] and  𝑚𝑗𝑗′

𝑖 (θ), +(θ̅) + 𝑚𝑗𝑗′
𝑖 (𝜃 ∪ �̅�) = 1 

(because (𝑚𝑖𝑗(𝐴𝑖) + 𝑚𝑖𝑗(�̅�𝑖) + 𝑚𝑖𝑗(𝐴𝑖 ∪ 𝐴�̅�)) (𝑚𝑖𝑗′  (𝐴𝑖) + 𝑚𝑖𝑗′  (𝐴�̅�) +

𝑚𝑖𝑗′  (𝐴𝑖 ∪ 𝐴�̅�)) = 1 × 1 = 1). This BBA construction can be easily extended for 

modeling the agreement, disagreement and uncertainty of 𝑛 > 2 criteria 𝐶𝑗1
, … , 𝐶𝑗𝑛

 

altogether if needed by taking 

𝑚𝑗1,…,𝑗𝑛

𝑖 (𝜃) = ∏ 𝑚𝑖𝑗𝑘
(𝐴𝑖)𝑛

𝑘=1 + ∏ 𝑚𝑖𝑗𝑘
(�̅�𝑖)𝑛

𝑘=1 , 

𝑚𝑗1,…,𝑗𝑛

𝑖 (�̅�) = ∑ ∏ 𝑚𝑖𝑗𝑘
(𝑋𝑗𝑘

)𝑛
𝑘=1𝑋𝑗1,…,𝑋𝑗𝑛

∈{𝐴𝑖,�̅�𝑖}

𝑋𝑗1∩…∩𝑋𝑗𝑛
=∅

, 

𝑚𝑗1,…,𝑗𝑛

𝑖 (𝜃 ∪ �̅�) = 1 − 𝑚𝑗1,…,𝑗𝑛

𝑖 (𝜃) − 𝑚𝑗1,…,𝑗𝑛

𝑖 (�̅�). 

Step 2. Construction of BBA 𝒎𝒋𝒋′(. ) (fusion step). Once all the BBAs 

𝑚𝑗𝑗′
𝑖 (. ) (i=1,…,M) are calculated one combines them to get the component 

𝐾𝑗𝑗′ = (𝑚𝑗𝑗′(𝜃), 𝑚𝑗𝑗′(�̅�), 𝑚𝑗𝑗′(𝜃 ∪ �̅�)) of ICBM 𝐾 = [𝐾𝑗𝑗′]. This fusion step can 

be done in many ways depending on the combination rule chosen by the user. If the 

number of alternatives M is not too large we recommend to combine the BBAs 

𝑚𝑗𝑗′
𝑖 (. ) with PCR6 fusion rule [30, Vol. 3] because of known deficiencies of 

Dempster’s rule. If M is too large to prevent PCR6 working on computer, we can just 

use the simple averaging rule of combination in these high dimensional MCDM 

problems. Simple Matlab code for PCR6 rule can be found in [42] for convenience. 

The computational complexity of BF-ICrA is of course higher than the 

complexity of ICrA because it makes a more precise evaluation of local and global 

inter-criteria belief matrices with respect to Intuitionistic Fuzzy inter-criteria matrices 

of ICrA. The overall reduction of the computational burden of the original MCDM 

problem thanks to BF-ICrA depends highly on the problem under concern, the 

complexity and cost to evaluate each criteria involved in it, as well as the number of 

redundant criteria identified by BF-ICrA method. 

5. Simplification of original MCDM thanks to BF-ICrA 

Once the global Inter-Criteria Belief Matrix  

𝐾 = [ 𝐾𝑗𝑗′ = (𝑚𝑗𝑗′(𝜃),  𝑚𝑗𝑗′(�̅�),  𝑚𝑗𝑗′(𝜃 ∪ �̅�))] 

is calculated, we need to identify and cluster the criteria that are in strong agreement, 

in strong disagreement, and those on which we are uncertain. For identifying the 
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criteria that are in very strong agreement, we evaluate the distance of each component 

of  𝐾𝑗𝑗′  with the BBA representing the best agreement state and characterized by the 

specific BBA 𝑚𝑇(𝜃) = 1. We use the index T in the notation 𝑚𝑇(. ) to refer that the 

agreement is true, and F in 𝑚𝐹(. ) to specify that the agreement is false. From a 

similar approach we can also identify, if we want, the criteria that are in very strong 

disagreement using the distance of 𝑚𝑗𝑗′(. ) with respect to the BBA representing the 

best disagreement state characterized by the specific BBA 𝑚𝐹(�̅�) = 1. As alternative 

of Jousselme’s distance [37], we use the 𝑑BI(. , . ) distance based on Belief Interval 

(BI) [36] because it is a good method for measuring the distance 𝑑(𝑚1, 𝑚2) between 

the two BBAs 𝑚1(. ) and 𝑚2(. ) (here 𝑚1(. ) = 𝑚𝑗𝑗′(. ), and 𝑚2(. ) = 𝑚𝑇(. ), or 

𝑚2(. ) = 𝑚𝐹(. ))  over the same FoD. It is defined by 

(23)   (𝑚1, 𝑚2)  ≜ √𝑁𝑐 . ∑ 𝑑𝑊
2 (BI1(𝑋), BI2(𝑋))𝑋∈2Θ , 

where the belief intervals are defined by BI1(𝑋) ≜ [Bel1(𝑋), Pl1(𝑋)] and BI2(𝑋) ≜
[Bel2(𝑋), Pl2(𝑋)] and computed from 𝑚1(. ) and 𝑚2(. ) thanks to formula (1). 

𝑑𝑊(BI1(𝑋), BI2(𝑋)) is Wasserstein’s distance between intervals calculated by 

(24)   𝑑𝑊([𝑎1, 𝑏1], [𝑎2, 𝑏2]) = √[
𝑎1+𝑏1

2
−

𝑎2+𝑏2

2
]2, 

and 𝑁𝑐 =
1

2|Θ|−1 is a factor to get 𝑑BI(𝑚1, 𝑚2) ∈ [0,1]. 

Because all criteria that are in strong agreement somehow contain redundant 

(correlated) information and behave similarly from decision-making standpoint, we 

propose to simplify the original MCDM problem by keeping in the MCDM only 

criteria that are non-redundant. The remaining criteria can be eventually weighted by 

their degree of importance reflecting the number of different criteria that are in 

agreement through this BF-ICrA approach. 

For instance, if one has a seven criteria MCDM problem and if criteria 𝐶1, 𝐶2,  

and 𝐶3 are in strong agreement we will only select one remaining criterion among 

{𝐶1, 𝐶2, 𝐶3} and we give it a weight of 𝜔1 + 𝜔2 + 𝜔3. Moreover if 𝐶4 and 𝐶5 are in 

strong agreement also we will only select one remaining criterion among {𝐶4, 𝐶5} and 

we give it a weight of 𝜔4 + 𝜔5, and we will use the weight 𝜔6 for 𝐶6, and 𝜔7 for 𝐶7 

Hence the original MCDM problem will reduce to a four simplified MCDM problem 

that can be solved using BF-TOPSIS method already presented in details in [3] and 

in [8], or with AHP [4] if one prefers, or with any other chosen method that the 

system-designer may prefer. 

The strategy for selecting the most representative criterion among a set of 

redundant criteria is not unique and depends mainly on the cost necessary (i.e. human 

efforts, data mining, computational resources, etc.) for getting the values of the score 

matrix of the problem under concern. The least costly criteria may be a good option 

of selection. 

In some MCDM problems the adjustment of weighting factors is necessary and 

the simplified MCDM allows only to reduce the computational complexity of the 

original problem. But in particular MCDM problems, it is not always very judicious 

to readjust the weights of criteria for the simplified MCDM from the weights of 
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original MCDM problem because it seems more reasonable to choose them once the 

the simplified MCDM is determined as done in the example of Section 6.2.  

In [38] we provided simple detailed examples for BF-ICrA where we selected 

the representative criterion as being the one with smallest index. So in the 

aforementioned example the simplified MCDM problem will reduce to a 𝑀 × 4 

MCDM problem involving only four criteria 𝐶1, 𝐶4, 𝐶6, and 𝐶7 .  
The BF-ICrA method proposed in this work allows also, in principle, to make a 

refined analysis (if necessary) based on IC matrices 𝐾𝑗𝑗′
𝑖  about the origin of 

disagreement between criteria with respect to each alternative 𝐴𝑖 in order to identify 

the potential inconsistencies in original MCDM problem. This aspect is not 

developed in this paper and has been left for future investigations. It is worth 

mentioning that the analysis of the number of redundant criteria versus time 

improvements that could be proposed as an effective measure of performance of this 

approach depends highly of the application under consideration and the difficulty 

(and cost) to get the value of each criteria. 

6. Two applications of BF-ICrA 

In this section we present two applications of the BF-ICrA approach. The first one is 

for Global Positioning System (GPS) Global Surveying Problems (GSP) presented in 

[39], and the second one is for the car selection problem. 

6.1. Application of BF-ICrA for the GPS surveying problem 

GPS surveying is an NP-hard problem. For designing Global Positioning System 

surveying network a given set of earth points must be observed consecutively. The 

survey cost is the sum of the distances to go from one point to another one. This kind 

of problems is hard to be solved with traditional numerical methods. Here we use BF- 

ICrA to analyse an Ant Colony Optimization (ACO) algorithm developed to provide 

near-optimal solutions for Global Positioning System surveying problem. 

GPS satellites continuously transmit radio signals to the Earth while orbiting it. 

A receiver, with unknown position on Earth, has to detect and convert the signals 

received from all of the satellites into useful measurements. These measurements 

would allow a user to compute a three-dimensional coordinate position: location of 

the receiver. Any GPS observation is proven to have biases, hence, in order to survey 

an appropriate combination of measurement processing strategies must be used to 

minimize their effect on the positioning results. Differencing data collected 

simultaneously from two or more GPS receivers to several GPS satellites allows to 

eliminate or significantly reduce most of the biases. The GPS network can be defined 

as set of stations (𝑎1, 𝑎2, … , 𝑎𝑛), which are co-ordinated by placing receivers  

(𝑋1, 𝑋2, … ) on them to determine sessions (𝑎1𝑎2,  𝑎1𝑎3, 𝑎2𝑎3, … ) among them. The 

problem is to search for the best order in which these sessions can be organized to 

give the best schedule. Thus, the schedule can be defined as a sequence of sessions 

to be observed consecutively. The solution is represented by linear graph with 

weighted edges. The nodes represent the stations and the edges represent the moving 
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cost. The objective function of the problem is the cost of the solution which is the 

sum of the costs (time) to move from one point to another one. 𝐶(𝑉) = ∑ 𝐶(𝑎𝑖 ,  𝑎𝑗), 

where 𝑎𝑖𝑎𝑗 is a session in solution V. For example if the number of points (stations) 

is 4, a possible solution is 𝑉 = (𝑎1,  𝑎3,  𝑎2,  𝑎4) and it can be represented by linear 

graph 𝑎1 → 𝑎3 → 𝑎2 → 𝑎4. The moving costs are as follows: 𝐶(𝑎1, 𝑎3), 𝐶(𝑎3, 𝑎2), 
𝐶(𝑎2, 𝑎4). Thus the cost of the solution is 𝐶(𝑉) = 𝐶(𝑎1, 𝑎3) +  𝐶(𝑎3, 𝑎2) +
𝐶(𝑎2, 𝑎4).  In practice, determining how each GPS receiver should be moved between 

stations to be surveyed in an efficient manner taking into account some important 

factors such as time, cost etc. The problem is to search for the best order, with respect 

to the time, in which these sessions can be observed to give the cheapest schedule or 

to minimize 𝐶(𝑉). The initial data is a cost matrix, which represents the cost (time, 

or distance) of moving a receiver from one point to another. Solving such problems 

‒ GSPs ‒ to optimality requires a very high computational time. Therefore, meta-

heuristic methods are used to provide near-optimal solutions for large networks 

within acceptable amount of computational effort. In this paper, we consider the Max-

Min Ant System (MMAS) meta-heuristic [40] and we present it briefly in the next 

subsection. 

Real ants foraging for food lay down quantities of pheromone (chemical cues) 

marking the path that they follow. An isolated ant moves essentially at random but 

an ant encountering a previously laid pheromone will detect it and decide to follow 

it with high probability and thereby reinforce it with a further quantity of pheromone. 

The repetition of the above mechanism represents the auto-catalytic behaviour of real 

ant colony where the more the ants follow a trail, the more attractive that trail 

becomes. 

The ACO Algorithm uses a colony of artificial ants that behave as cooperative 

agents in a mathematical space where they are allowed to search and reinforce 

pathways (solutions) in order to find the optimal ones. The problem is represented by 

graph and the ants walk on the graph to construct solutions. The solution is 

represented by path in the graph. After initialization of the pheromone trails, ants 

construct feasible solutions, starting from random nodes, then the pheromone trails 

are updated. At each step ants compute a set of feasible moves and select the best one 

(according to some probabilistic rules) to carry out the rest of the tour. The transition 

probability 𝑝𝑖𝑗, to choose the node j when the current node is i, is based on the 

heuristic information 𝜂𝑖𝑗 and pheromone trail level 𝜏𝑖𝑗 of the move, 𝑖, 𝑗 = 1, … , 𝑛: 

(25)   𝑝𝑖𝑗 =
𝜏𝑖𝑗

𝛼 𝜂𝑖𝑗
𝛽

∑ 𝜏𝑖𝑘
𝛼 𝜂𝑖𝑘

𝛽
𝑘∈Unused

. 

The higher value of the pheromone and the heuristic information, the more 

profitable is to select this move and resume the search. In the beginning, the initial 

pheromone level is set to a small positive constant value 𝜏0 and then ants update this 

value after completing the construction stage. ACO Algorithms adopt different 

criteria to update the pheromone level. 

In our implementation we use MAX-MIN Ant System (MMAS) [40, 41] which 

is one of the best ant approaches. In MMAS the main is using fixed upper bound 𝜏max 

and lower bound 𝜏min of the pheromone trails. Thus accumulation of big amount of 
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pheromone by part of the possible movements and repetition of same solutions is 

partially prevented.  

The aim of using only one solution is to make solution elements, which 

frequently occur in the best found solutions, get large reinforcement. Pheromone trail 

update is given by: 

(26)   𝜏𝑖𝑗 ← 𝜌𝜏𝑖𝑗 + Δ𝜏𝑖𝑗, 

where  

Δ𝜏𝑖𝑗 = {
1/𝐶(𝑉best) if (𝑖, 𝑗) ∈ best solution,

0                                  otherwise,
 

and 𝑉best is the iteration best solution and 𝑖, 𝑗 = 1, … , 𝑛. 
To avoid stagnation of the search, the range of possible pheromone value on 

each movement is limited to an interval [𝜏min, 𝜏max]. 𝜏max is an asymptotic 

maximum of 𝜏𝑖𝑗 and 𝜏max = 1 (1 − 𝜌)⁄ 𝐶(𝑉∗), while 𝜏min = 0.087𝜏max. Where 𝑉∗ 

is the optimal solution, but it is unknown, therefore we use 𝑉best instead of 𝑉∗. 
When all ants have completed their solutions, the pheromone level is updated 

by applying the global update rule. Only the pheromone corresponding to the best 

found solution is increased by the similar to the MMAS way. The global update rule 

is intended to provide a greater amount of pheromone on the paths of the best 

solution. It is a kind of intensification of the search around the best found solution. 

We use heuristic information equals to one over the cost of the session. 

Here, we analyse the experimental results obtained using MMAS Algorithm. 

For this, we use real data from Malta and Seychelles GPS networks composed of 38 

sessions and 71 sessions respectively denoted GSP1 and GSP2. We use also six larger 

test problems range from 100 to 443 sessions denoted GSP3, …, GSP8. The results 

are obtained by performing 30 independent runs, for every experiment. The details 

of our MMAS implementation are given in [43]. So in our GSP example we consider 

eight GSP criteria 𝐶𝑖 = GSP𝑖, 𝑖 = 1, … , 8, and six average costs as results 𝐴1, … , 𝐴6, 

where 𝐴1 is the cost average for the first 5 runs, 𝐴2 the cost average for the first 10 

runs, 𝐴3 for the first 15 runs), … , and finally 𝐴6 for all the 30 runs. Table 1 shows 

the values of averaged costs obtained for this problem. It corresponds to the transpose 

of the score matrix S. 

Hence in this problem 𝑀 = 6 and 𝑁 = 8, and  𝑆 = [𝑆𝑖𝑗] is a 6 × 8 score matrix. 

Based on classical ICrA approach, one gets the following IC matrices (for 

presentation convenience and due to typesetting column width, we decompose at 

present the IC matrix 𝐾 = [𝐾𝑗𝑗′ = (𝐾
𝑗𝑗′
𝜇

, 𝐾𝑗𝑗′
𝜈 )] into two distinct matrices  

𝐾𝜇 = [𝐾
𝑗𝑗′
𝜇

] and 𝐾𝜈 = [𝐾𝑗𝑗′
𝜈 ]): 
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1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 0.60 0.27 0.67 0.73 0.67 0.33 0.87

0.60 1 0.27 0.80 0.73 0.53 0.47 0.73

0.27 0.27 1 0.07 0 0.20 0.40 0.13

0.67 0.80 0.07 1 0.93 0.73 0.53 0.80

0.73 0.73 0 0.93 1 0.80 0.60 0.87

0.67 0.53 0.20 0.73 0.80 1 0.67 0

C C C C C C C C

C

C

C

C

C

C

C

C

 K .

.80

0.33 0.47 0.40 0.53 0.60 0.67 1 0.47

0.87 0.73 0.13 0.80 0.87 0.80 0.47 1

 
 
 
 
 
 
 
 
 
 
 
  

 

 

Table 1. Transpose of the score matrix  𝑆 = [𝑆𝑖𝑗] of GSP problem 

GSP Criteria A1 A2 A3 A4 A5 A6 

C1=GSP1 899.00 898.00 898.33 898.50 899.40 899.50 

C2=GSP2 916.40 915.60 922.47 924.80 924.72 922.07 

C3=GSP3 41336.40 41052.40 40991.93 40935.90 40832.20 40910.60 

C4=GSP4 3244.80 3303.30 3327.00 3344.55 3345.60 3341.93 

C5=GSP5 1656.20 1660.80 1663.93 1664.95 1666.96 1665.90 

C6=GSP6 1673.60 1683.50 1690.73 1688.75 1690.24 1692.67 

C7=GSP7 3420.00 3430.70 3433.13 3426.85 3429.44 3428.57 

C8=GSP8 3758.20 3755.70 3758.73 3760.50 3760.80 3765.80 

 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0 0.40 0.73 0.33 0.27 0.33 0.67 0.13

0.40 0 0.73 0.20 0.27 0.47 0.53 0.27

0.73 0.73 0 0.93 1 0.80 0.60 0.87

0.33 0.20 0.93 0 0.07 0.27 0.47 0.20

0.27 0.27 1 0.07 0 0.20 0.40 0.13

0.33 0.47 0.80 0.27 0.20 0 0.33 0

v

C C C C C C C C

C

C

C

C

C

C

C

C

K .

.20

0.67 0.53 0.60 0.47 0.40 0.33 0 0.53

0.13 0.27 0.87 0.20 0.13 0.20 0.53 0

 
 
 
 
 
 
 
 
 
 
 
  

 

 

The element 𝐾
𝑗𝑗′
𝜇

 of matrix 𝐾𝜇 expresses the degree of agreement between 

criteria 𝐶𝑗 = GSP𝑗 and 𝐶𝑗′ = GSP𝑗′ , whereas the element 𝐾𝑗𝑗′
𝜈  of matrix 𝐾𝜇 expresses 

the degree of disagreement between 𝐶𝑗 = GSP𝑗 and 𝐶𝑗′ = GSP𝑗′ . Based on these 

results, one sees that ACO algorithm performs similarly for 

GSP2,  GSP4,  GSP5 and GSP8, because they are all in high agreement. Indeed 𝜇𝑗𝑗′  

values for 𝑗, 𝑗′ ∈ {2, 4, 5, 8} are quite high (greater than 70%). They are GPS 

networks with different numbers of sessions, but may have a similar structure, 

therefore, the value of agreement is high. For other networks, we can conclude that 

they have very different structure. What is worth noting is that there appears also a 

strong agreement of GSP1 with GSP8 because 𝜇18 = 0.87. But because GSP8 is also 

in strong agreement with GSP2,  GSP4,  GSP5 and with GSP1 it is logically expected 

that GSP1 should be also in agreement with GSP2, GSP4,  GSP5, which is unfortunately 
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not the case based on this classical ICrA. This example points out some inconsistency 

of ICrA result because of the too crude method of estimation of the degree of 

agreement and disagreement between criteria based on IFS. 

Now if we consider the same example with the same score matrix S, built from 

Table 1, we obtain the following IC Belief matrices (for presentation convenience, 

the ICBM  𝐾𝑗𝑗′ = (𝑚𝑗𝑗′(𝜃), 𝑚𝑗𝑗′(�̅�), 𝑚𝑗𝑗′(𝜃 ∪ �̅�)), is decomposed into three 

matrices 𝐾(𝜃) = [𝐾𝑗𝑗′
𝜃 = 𝑚𝑗𝑗′(𝜃)], 𝐾(�̅�) = [𝐾𝑗𝑗′

�̅� = 𝑚𝑗𝑗′(�̅�)], and 𝐾(𝜃 ∪ �̅�) =

[𝐾𝑗𝑗′
𝜃∪�̅� = 1 − 𝑚𝑗𝑗′(𝜃) − 𝑚𝑗𝑗′(�̅�)]):  

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.9098 0.6732 0.1791 0.5968 0.6106 0.5620 0.1659 0.7789

0.6732 0.9546 0.0364 0.8983 0.8783 0.8341 0.5532 0.7016

0.1791 0.0364 0.8722 0.0172 0.0154 0.0178 0.0366 0.1137

0.5968 0.8983 0.0172 0
( )

C C C C C C C C

C

C

C

C

C

C

C

C

 K
.9552 0.9146 0.9163 0.7395 0.6092

0.6106 0.8783 0.0154 0.9146 0.8917 0.8778 0.6922 0.6315

0.5620 0.8341 0.0178 0.9163 0.8778 0.9060 0.7630 0.6441

0.1659 0.5532 0.0366 0.7395 0.6922 0.7630 0.8587 0.2484

0.7789 0.7016 0.1137 0.6092 0.6

,

315 0.6441 0.2484 0.8508

 
 
 
 
 
 
 
 
 
 
 
  

 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.0207 0.1941 0.5385 0.2578 0.1757 0.2117 0.5335 0.0399

0.1941 0.0166 0.8323 0.0486 0.0298 0.0513 0.1808 0.0682

0.5385 0.8323 0.0117 0.9002 0.8754 0.8548 0.7062 0.5486

0.2578 0.0486 0.9002 0
( )

C C C C C C C C

C

C

C

C

C

C

C

C

 K
.0187 0.0216 0.0204 0.0606 0.1193

0.1757 0.0298 0.8754 0.0216 0.0170 0.0201 0.0558 0.0832

0.2117 0.0513 0.8548 0.0204 0.0201 0.0154 0.0390 0.0726

0.5335 0.1808 0.7062 0.0606 0.0558 0.0390 0.0110 0.3495

0.0399 0.0682 0.5486 0.1193 0.0

.

832 0.0726 0.3495 0.0100

 
 
 
 
 
 
 
 
 
 
 
  

 

From ICBM 𝐾(𝜃) and 𝐾(�̅�), we compute the matrix 𝐷(𝜃) of distance of  

𝑚𝑗𝑗′(. ) to the full agreement state with BBA 𝑚𝐹(𝜃) = 1 based on 𝑑BI(. ) distance. 

We get the following distances to full agreement: 

BI

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

( ) [ ( , )]

0.0590 0.2633 0.6845 0.3331 0.2892 0.3314 0.6893 0.1406

0.2633 0.0321 0.8987 0.1135 0.3230 0.1950

0.6845 0.8987 0.0774 0.9418 0.9306 0.9192 0.8381 0.72

jj jj TD d m m

C C C C C C C C

C

C

C

C

C

C

C

C

    



D

0.0767 0.0803

41

0.3331 0.9418 0.0326 0.0552 0.1706 0.2668

0.2892 0.9306 0.0679 0.0770 0.1958 0.2404

0.3314 0.1135 0.9192 0.0552 0.0770 0.0592 0.1494 0.2293

0.6893 0.3230 0.8381 0.1706 0.1958 0.1494 0.0849 0.5626

0.1406

0.0767 0.0566

0.0803 0.0566
.

0.1950 0.7241 0.2668 0.2404 0.2293 0.5626 0.0892

 
 
 
 
 
 
 
 
 
 
 
  
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The element 𝐷𝑗𝑗′  represents the agreement distance between 𝐶𝑗, and 𝐶𝑗′ , the 

lower the better. From the values of elements of  𝐷(𝜃) matrix one sees clearly that 

ACO performs similarly for GSP2, GSP4 and GSP5 because distances 𝐷24, 𝐷25, and  

𝐷45 are very small. Also we see that GSP6 is also in good agreement with GSP4 and 

GSP5 but is relatively less in agreement with GSP2 because 𝐷26 = 0.1135. As we 

see there is no inconsistency in this new BF-ICrA method with respect to what 

provides classical ICrA because with BF-ICrA we have a much better and precise 

estimation of degrees of agreement and disagreement between criteria for making the 

analysis thanks to a proper belief functions modelling. 

6.2. Application of BF-ICrA for the car selection problem 

Let’s consider another concrete problem related to car selection. Suppose one has a 

limited budget of 12000€ and one wants to buy a new car based on multiple criteria. 

A set of potential cars under 12K€ that present interest with respect to some criteria 

is obtained initially from a search on the web. 

How to apply BF-ICrA to simplify the selection process, and how to make the 

final choice of the car to buy? 

Here we consider a set of ten small urban cars {𝐴1,  𝐴2, … ,  𝐴10} as follows: 

𝐴1 == DACIA SANDERO SCe 75; 

𝐴2 == RENAULT CLIO TCe 75; 

𝐴3 ==SUZUKI CELERIO 1.0 VVT Avantage; 

𝐴4 ==FORD KA+ Ka+ 1.2 70 ch S&S Essential; 

𝐴5 ==MITSUBISHI SPACE STAR 1.0 MIVEC 71; 

𝐴6 ==KIA PICANTO 1.0 essence MPi 67 ch BVM5 Motion;  

𝐴7 = HYUNDAI I10 1.0 66 BVM5 Initia; 

𝐴8 = CITROEN C1 VTi 72 S&S Live; 

𝐴9 = TOYOTA AYGO 1.0 VVT-i x; 

𝐴10 = PEUGEOT 108 VTi 72ch S&S BVM5 Like. 

We consider the following seventy criteria related to price, dimensions, engine 

and consumption of the car for making the choice of the best car to buy: 

𝐶1 is the price (€); 

𝐶2 is the length (mm); 

𝐶3 is the height (mm); 

𝐶4 is the width without mirror (mm); 

𝐶5 is the wheelbase (mm); 

𝐶6 is the max loading volume (l); 

𝐶7 is the tank capacity (l); 

𝐶8 is the unloaded weight (kg); 

𝐶9 is the cylinder volume(cm3); 

𝐶10 is the acceleration 0-100 km/h (s); 

𝐶11 is the max speed (km/h); 

𝐶12 is the power (kW); 

𝐶13 is the horse power (HP); 

𝐶14 is the mixed consumption (l per 100 km); 
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𝐶15 is the extra-urban consumption (l per 100 km); 

𝐶16 is the urban consumption (l per 100 km); 

𝐶17 is the CO2 emission level (g/km) 

The score matrix 𝑆 = [𝑆𝑖𝑗] is built from information extracted from car-makers 

technical characteristics available on the world wide web site 

https://automobile.choisir.com/comparateur/voitures-neuves. For the chosen 

cars, the corresponding original score matrix is given by 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
7990 4069 1523 1733 2589 1200 50 969 998 14.2 158 55 75 5.2 4.5 6.5 1171

10990 4063 1448 1732 2589 1146 45 1138 898 12.3 178 56 75 5 4.2 6.3 1132

9790 3600 1530 1600 2425 1053 33

4

5

6

7

8

9

10

C C C C C C C C C C C C C C C C C

A

A

A

A

A

A

A

A

A

A

S

5 815 998 13.9 155 50 68 3.9 3.6 4.5 89

10350 3941 1524 1774 2490 1029 42 1063 1198 14.6 164 51 70 5.1 4.4 6.3 117

10990 3795 1505 1665 2450 910 35 865 999 16.7 172 52 71 4.6 4.1 5.3 105

11000 3595 1485 1595 2400 1010 35 860 998 14.3 161 49 67 4.4 3.7 5.6 106

11050 3665 1500 1660 2385 1046 40 1008 998 14.7 156 49 66 5.1 4.3 6.5 117

11550 3466 1465 1615 2340 780 35 840 998 14 160 53 72 3.7 3.4 4.3 85

11590 3465 1460 1615 2340 812 35 915 998 13.8 160 51 69 4.1 3.6 4.9 93

11950 3475 1460 1615 2340 780 35 840 998 12.6 160

.

53 72 3.7 3.4 4.3 85

 
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 
 
 
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 
 
 
 
 
 
 

 

For criteria 𝐶1, 𝐶4, 𝐶8,, and 𝐶14 to 𝐶17 we consider that smaller is better. For other 

criteria larger is better. To make the preference order homogeneous in the score 

matrix, we multiply values of columns 𝐶1, 𝐶4, 𝐶8,, and 𝐶14 to 𝐶17 by –1 so that our 

MCDM problem is described by a modified score matrix with homogeneous 

preference order (“larger is better”) for each column before applying the BF-ICrA 

method. 

After applying BF-ICrA method (with PCR6 fusion rule in Step 2) we obtain 

the following IC Belief matrices 𝐾(𝜃) = [𝑚𝑗𝑗′(𝜃)], 𝐾(�̅�) = [𝑚𝑗𝑗′(�̅�)], and 

𝐾(𝜃 ∪ �̅�)  (the ICBM 𝐾(𝜃 ∪ �̅�) is obtained from 𝐾(𝜃) and 𝐾(�̅�) by taking 

𝐾(𝜃 ∪ �̅�) = [𝐾𝑗𝑗′
𝜃∪�̅� = 1 − 𝑚𝑗𝑗′(𝜃) − 𝑚𝑗𝑗′(�̅�)]) 

0.7610 0.6456 0.6005 0.0722 0.6689 0.6518 0.6988 0.1152 0.3728 0.3624 0.1885 0.3273 0.3528 0.0836 0.0593 0.0981 0.1024

0.6456 0.8

( )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

C C C C C C C C C C C C C C C C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

 K

905 0.4994 0.0281 0.8716 0.7718 0.8635 0.0579 0.1022 0.2123 0.5406 0.6069 0.6062 0.0572 0.0411 0.0746 0.0760

0.6005 0.4994 0.8352 0.2913 0.4792 0.5196 0.4764 0.4315 0.5934 0.5300 0.1100 0.1676 0.2137 0.2570 0.1837 0.3016 0.2678

0.0722 0.0281 0.2913 0.8523 0.0403 0.0899 0.0402 0.7553 0.0688 0.1874 0.0941 0.1048 0.1066 0.7690 0.7849 0.7521 0.7520

0.6689 0.8716 0.4792 0.0403 0.8730 0.7741 0.8602 0.0684 0.0588 0.1916 0.5275 0.6167 0.6093 0.0889 0.0650 0.1098 0.1148

0.6518 0.7718 0.5196 0.0899 0.7741 0.8063 0.7533 0.0863 0.1126 0.2059 0.3050 0.3777 0.4096 0.0528 0.0493 0.0528 0.0572

0.6988 0.8635 0.4764 0.0402 0.8602 0.7533 0.9492 0.0455 0.1989 0.1959 0.5019 0.6660 0.6169 0.0964 0.0783 0.1028 0.1371

0.1152 0.0579 0.4315 0.7553 0.0684 0.0863 0.0455 0.8060 0.2495 0.3144 0.0877 0.1262 0.1472 0.7398 0.7042 0.7632 0.7424

0.3728 0.1022 0.5934 0.0688 0.0588 0.1126 0.1989 0.2495 0.8901 0.6005 0.0252 0.0187 0.0211 0.1409 0.1061 0.1684 0.1092

0.3624 0.2123 0.5300 0.1874 0.1916 0.2059 0.1959 0.3144 0.6005 0.7484 0.1268 0.0447 0.0500 0.1628 0.1087 0.2057 0.1720

0.1885 0.5406 0.1100 0.0941 0.5275 0.3050 0.5019 0.0877 0.0252 0.1268 0.7809 0.5442 0.4851 0.2404 0.2154 0.2709 0.2783

0.3273 0.6069 0.1676 0.1048 0.6167 0.3777 0.6660 0.1262 0.0187 0.0447 0.5442 0.7845 0.7665 0.2940 0.2388 0.3387 0.3693

0.3528 0.6062 0.2137 0.1066 0.6093 0.4096 0.6169 0.1472 0.0211 0.0500 0.4851 0.7665 0.7765 0.2708 0.2234 0.3128 0.3303

0.0836 0.0572 0.2570 0.7690 0.0889 0.0528 0.0964 0.7398 0.1409 0.1628 0.2404 0.2940 0.2708 0.8921 0.8678 0.8986 0.9066

0.0593 0.0411 0.1837 0.7849 0.0650 0.0493 0.0783 0.7042 0.1061 0.1087 0.2154 0.2388 0.2234 0.8678 0.8628 0.8634 0.8735

0.0981 0.0746 0.3016 0.7521 0.1098 0.0528 0.1028 0.7632 0.1684 0.2057 0.2709 0.3387 0.3128 0.8986 0.8634 0.9141 0.9168

0.1024 0.0760 0.2678 0.7520 0.1148 0.0572 0.1371 0.7424 0.1092 0.1720 0.2783 0.3693 0.3303 0

,

.9066 0.8735 0.9168 0.9263
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0.0073 0.0559 0.0413 0.5165 0.0452 0.0334 0.0503 0.3839 0.1473 0.0725 0.2356 0.1333 0.0205 0.5677 0.6001 0.5615 0.5636

0.0559 0.0

( )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

C C C C C C C C C C C C C C C C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

 K

232 0.2781 0.8331 0.0262 0.0469 0.0527 0.7364 0.2368 0.2329 0.1259 0.1136 0.1168 0.8256 0.8285 0.8187 0.8251

0.0413 0.2781 0.0199 0.4166 0.2692 0.1566 0.3470 0.2421 0.0132 0.0353 0.5231 0.4722 0.4097 0.5242 0.5658 0.5041 0.5527

0.5165 0.8331 0.4166 0.0164 0.7815 0.6067 0.8499 0.0324 0.3318 0.2199 0.5259 0.5691 0.5472 0.0623 0.0396 0.0880 0.0972

0.0452 0.0262 0.2692 0.7815 0.0222 0.0407 0.0434 0.6918 0.3119 0.2453 0.1233 0.0963 0.1065 0.7609 0.7695 0.7530 0.7560

0.0334 0.0469 0.1566 0.6067 0.0407 0.0153 0.0724 0.5777 0.3117 0.2007 0.2177 0.1845 0.1727 0.7491 0.7309 0.7676 0.7671

0.0503 0.0527 0.3470 0.8499 0.0434 0.0724 0.0175 0.8074 0.1993 0.2931 0.1976 0.1074 0.1416 0.8036 0.8032 0.8152 0.7871

0.3839 0.7364 0.2421 0.0324 0.6918 0.5777 0.8074 0.0166 0.0819 0.1206 0.5366 0.4927 0.4454 0.0566 0.0559 0.0569 0.0753

0.1473 0.2368 0.0132 0.3318 0.3119 0.3117 0.1993 0.0819 0.0004 0.0085 0.4128 0.4864 0.4643 0.2182 0.2972 0.1824 0.2371

0.0725 0.2329 0.0353 0.2199 0.2453 0.2007 0.2931 0.1206 0.0085 0.0045 0.2490 0.4253 0.4127 0.2898 0.3474 0.2535 0.3006

0.2356 0.1259 0.5231 0.5259 0.1233 0.2177 0.1976 0.5366 0.4128 0.2490 0.0096 0.0790 0.1087 0.4037 0.3761 0.4053 0.4043

0.1333 0.1136 0.4722 0.5691 0.0963 0.1845 0.1074 0.4927 0.4864 0.4253 0.0790 0.0157 0.0179 0.3934 0.4018 0.3820 0.3633

0.1205 0.1168 0.4097 0.5472 0.1065 0.1727 0.1416 0.4454 0.4643 0.4127 0.1087 0.0179 0.0163 0.4209 0.4233 0.4092 0.4013

0.5677 0.8256 0.5242 0.0623 0.7609 0.7491 0.8036 0.0566 0.2182 0.2898 0.4037 0.3934 0.4209 0.0247 0.0244 0.0282 0.0271

0.6001 0.8285 0.5658 0.0396 0.7695 0.7309 0.8032 0.0559 0.2972 0.3474 0.3761 0.4018 0.4233 0.0244 0.0181 0.0339 0.0332

0.5615 0.8187 0.5041 0.0880 0.7530 0.7676 0.8152 0.0569 0.1824 0.2535 0.4053 0.3820 0.4092 0.0282 0.0339 0.0257 0.0272

0.5636 0.8251 0.5527 0.0972 0.7560 0.7671 0.7871 0.0753 0.2371 0.3006 0.4043 0.3633 0.4013 0

.

.0271 0.0332 0.0272 0.0240
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From ICBM 𝐾(𝜃) and 𝐾(�̅�) we compute the matrix 𝐷(𝜃) = [𝐷𝑗𝑗′ =

𝑑BI(𝑚𝑗𝑗′ , 𝑚𝑇)] of distance of the BBA 𝑚𝑗𝑗′  with respect to the full agreement state 

having BBA 𝑚F(𝜃) = 1 based on 𝑑BI(. ) distance. We get the following distances to 

full agreement 

0.1401 0.2225 0.2434 0.7318 0.2054 0.2114 0.1901 0.6506 0.4113 0.3907 0.5493 0.4320 0.4128 0.7489 0.7766 0.7383 0.7369

0.2225 0.0

( )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
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C

C

C

C

C

C

C

C
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 D

709 0.3946 0.9034 0.1471 0.8414 0.5985 0.5349 0.3081 0.2659 0.2675 0.8848 0.8945 0.8726 0.8750

0.2434 0.3946 0.1014 0.5689 0.4016 0.3319 0.4383 0.4161 0.2387 0.2821 0.7145 0.6605 0.6078 0.6368 0.6948 0.6039 0.6445

0.731

0.0827 0.0977

8 0.9034 0.5689 0.0904 0.8721 0.7634 0.9054 0.1515 0.6548 0.5438 0.7242 0.7382 0.7272 0.1545 0.1370 0.1742 0.1780

0.2054 0.4016 0.8721 0.0805 0.1436 0.9058 0.8146 0.6524 0.5514 0.3145 0.2537 0.2618 0.8372 0.8536 0.8225 0.8214

0

0.0827

.2114 0.1471 0.3319 0.7634 0.1436 0.1165 0.1673 0.7520 0.6222 0.5261 0.4767 0.4227 0.4001 0.8501 0.8432 0.8589 0.8565

0.1901 0.4383 0.9054 0.0958 0.1673 0.0355 0.8820 0.5295 0.5681 0.3585 0.2302 0.2715 0.8541 0.8632 0.8565 0.80.0977 253

0.6506 0.8414 0.4161 0.1515 0.8146 0.7520 0.8820 0.1171 0.4588 0.4349 0.7325 0.6920 0.6597 0.1689 0.1890 0.1558 0.1746

0.4113 0.5985 0.2387 0.6548 0.6524 0.6222 0.5295 0.4588 0.0636 0.2331 0.7125 0.7476 0.7367 0.5695 0.6200 0.5405 0.5947

0.3907 0.5349 0.2821 0.5438 0.5514 0.5261 0.5681 0.4349 0.2331 0.1466 0.5893 0.7070 0.6988 0.5852 0.6389 0.5466 0.5845

0.5493 0.3081 0.7145 0.7242 0.3145 0.4767 0.3585 0.7325 0.7125 0.5893 0.1294 0.2887 0.1331 0.5907 0.5922 0.5748 0.5704

0.4320 0.2659 0.6605 0.7382 0.2537 0.4227 0.2302 0.6920 0.7476 0.7070 0.2887 0.1292 0.5571 0.5907 0.5278 0.5030

0.4128 0.2675 0.6078 0.7272 0.2618 0.4001 0.2715 0.6597 0.7367 0.6988 0.3331 0.1340 0.5819 0.6

0.1403

0.1403 086 0.5541 0.5411

0.7489 0.8848 0.6368 0.1545 0.8372 0.8501 0.8541 0.1689 0.5695 0.5852 0.5907 0.5571 0.5819 0.0705

0.7766 0.8945 0.6948 0.1370 0.8536 0.8432 0.8632 0.1890 0.6200 0.6389 0.5922 0.5907 0.6086

0.0842 0.0682 0.0632

0.084 0.0849

0.7383 0.8726 0.6039 0.1742 0.8225 0.8589 0.8565 0.1558 0.5405 0.5466 0.5748 0.5278 0.5541 0.0584

0.7369 0.8750 0.6445 0.1780 0.8214 0.8565 0.8253 0.1746 0.5947 0.5845 0.5704 0.5030 0.5411

2 0.0902 0.0842

0.0682 0.0902 0.0575

0

,

0.0509
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The element 𝐷𝑗𝑗′  represents the agreement distance between 𝐶𝑗 and 𝐶𝑗′, the 

lower the better. From the analysis of elements of 𝐷𝑗𝑗′  one sees clearly that 

criteria 𝐶14, 𝐶15, 𝐶16,, and 𝐶17  are in very strong agreement and will behave very 

similarly for the preference ordering which is not very surprising because they are all 

related with energy consumption. Hence only one criteria among of these four criteria 

be used to simplify the MCDM car selection problem. We decide to keep only criteria 

𝐶16 (urban consumption) in simplified MCD because urban displacements will be the 

main use of the car. One sees clearly that 𝐶5, 𝐶7, and 𝐶7 are also in very strong 

agreement and so they will behave very similarly for the preference ordering. One 

decides to keep only the criterion 𝐶7 (tank capacity) which we consider more 

important than criteria 𝐶2, and 𝐶5 because it is linked to autonomy of the car. From 
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BF-ICrA, one sees that tank capacity is linked with the dimensions of the car (mainly 

its length and wheelbase), which makes perfectly sense. Also we can note that criteria 

𝐶12, and 𝐶13 are not too far since their distance is only 0.1403 and we can simplify a 

bit more the MCDM problem by taking only criterion 𝐶12 (the power) instead of 

keeping 𝐶12, and 𝐶13. Thanks to BF-ICrA, we can simplify the original MCDM car 

selection problem by removing redundant criteria and keeping only those which bring 

useful information. So our simplified MCDM car selection problem is characterized 

by the following 10 × 11 score matrix: 

1 3 4 6 7 8 9 10 11 12 16

1

2

3

4

5

6

7

8

9

10

7990 1523 1733 1200 50 969 998 14.2 158 55 6.5

10990 1448 1732 1146 45 1138 898 12.3 178 56 6.3

9790 1530 1600 1053 35 815 998 13.9 155 50 4.5

10350 1524 1774 1029 42 1063 1198 14.6 164 51 6.3

10

C C C C C C C C C C C

A

A

A

A

A

A

A

A

A

A

S
990 1505 1665 910 35 865 999 16.7 172 52 5.3

11000 1485 1595 1010 35 860 998 14.3 161 49 5.6

11050 1500 1660 1046 40 1008 998 14.7 156 49 6.5

11550 1465 1615 780 35 840 998 14 160 53 4.3

11590 1460 1615 812 35 915 998 13.8 160 51 4.9

11950 1460 1615 780 35 840

.

998 12.6 160 53 4.3
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From this reduced score matrix, we can apply classical MCDM techniques to 

find the final preference order for making final decision and selectioning the car to 

buy. For this, one needs to define the importance imp(𝐶𝑗) of each criteria 𝐶𝑗 involved 

in the score matrix above. For simplicity, the importance of each criteria 𝐶𝑗 is 

expressed as a value in {1, 2, 3, 4, 5}, where 1 means the least important, and 5 means 

the most important. In this car selection example we take 𝑝(𝐶1) = imp(𝐶16) = 5, 
imp(𝐶6) = imp(𝐶7) = 4, imp(𝐶10) = imp(𝐶11) = imp(𝐶12) = 3, imp(𝐶8) =
imp(𝐶9) = 2 and  imp(𝐶3) = imp(𝐶4) = 1, which means that the price of the car 

and its urban consumption are the most important criteria for us, and its height and 

its width are the least important ones. From these importance values and after 

normalization, we get the following vector of relative weights of criteria 

𝑤 = [
5

33
 

1

 33
 

1

33
 

4

33
 

4

33
 

2

33
 

2

33
 

3

33
 

3

33
 

3

33
 

5

33
]. 

When using different BF-TOPSIS methods [3, 8], we will obtain the following 

preference orders. 

 with BF-TOPSIS1 method:  

𝐴2 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴7 ≻ 𝐴5 ≻ 𝐴6 ≻ 𝐴10 ≻ 𝐴9 ≻ 𝐴8 ≻ 𝐴3, 
 with BF-TOPSIS2 method:  

𝐴2 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴7 ≻ 𝐴5 ≻ 𝐴6 ≻ 𝐴10 ≻ 𝐴9 ≻ 𝐴8 ≻ 𝐴3, 
 with BF-TOPSIS3 method:  

𝐴2 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴7 ≻ 𝐴5 ≻ 𝐴10 ≻ 𝐴9 ≻ 𝐴6 ≻ 𝐴8 ≻ 𝐴3, 
 with BF-TOPSIS4 method:  

𝐴2 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴7 ≻ 𝐴5 ≻ 𝐴10 ≻ 𝐴9 ≻ 𝐴6 ≻ 𝐴8 ≻ 𝐴3. 
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When using classical AHP method [4], we obtain the following preference order 

(Here we did apply a two steps normalization of the score matrix. At first we 

normalize S according to (2) and in a second step each column is renormalized by 

dividing each element of the column by the sum of its elements. If we apply only first 

normalization step we obtain with AHP the preference order 𝐴2 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴7 ≻
𝐴5 ≻ 𝐴6 ≻ 𝐴9 ≻ 𝐴8 ≻ 𝐴10 ≻ 𝐴3). 

𝐴2 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴7 ≻ 𝐴5 ≻ 𝐴6 ≻ 𝐴9 ≻ 𝐴8 ≻ 𝐴3 ≻ 𝐴10. 

From the results of the BF-TOPSIS methods and AHP (with double 

normalization of score matrix), one sees that 𝐴2 car (RENAULT CLIO TCe 75) will 

be the best car to buy, and the car 𝐴1 (DACIA SANDERO SCe 75) will be the second 

best car to buy, whereas 𝐴3 (SUZUKI CELERIO 1.0 VVT Avantage) will be the 

worst one according to BF-TOPSIS or 𝐴10 according to AHP. Because the AHP and 

BF-TOPSIS methods are based on very different principles it is not surprising that 

preference order can change in the results of the methods, but what is most important 

from decision-making standpoint is the stability of the order of first best solutions. In 

this example, the car 𝐴2 is always the best car selection to make with BF-TOPSIS or 

with AHP method based on the chosen criteria involved in this MCDM problem and 

their importance weights. 

7. Conclusion 

In this paper we have presented a new method called BF-ICrA which helps to 

simplify (when it is possible) Multi-Criteria Decision-Making problems based on 

inter-criteria analysis and belief functions. This method is in the spirit of Atanassov's 

method but proposes a better construction of Inter-Criteria Matrix that fully exploits 

all information of the score matrix, and the closeness measure of agreement between 

criteria based on belief interval distance. In fact, BF-ICrA proposes a more precise 

and refined method for estimating the degree of agreement and disagreement between 

criteria which use the whole information available in the data. This BF-ICrA 

approach could, in theory, also deal with imprecise or missing score values using the 

technique presented in [8]. We have shown two concrete applications of BF-ICrA 

method. The first one related with the GPS surveying problem has been addressed in 

order to overcome the potential inconsistencies of the results generated by the 

classical ICrA method. Instances containing from 38 to 443 sessions have been 

solved using MMAS algorithm and we did compare the performance of ACO 

algorithms applied to eight GPS networks. Our results show that ACO can provide 

fast near-optimal solution for observing GPS networks, and could help to improve 

the services based on GPS networks. From this new Inter-Criteria Analysis we are 

able to identify some relations and dependences between the considered eight GPSs 

and MMAS algorithm performance. 

In our second application, we have shown how a typical (not so simple) multi-

criteria car selection problem can be addressed and solved by this BF-ICrA method 

coupled with BF-TOPSIS methods. This shows the usefulness and potential of this 

new technique to solve MCDM problems. 
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