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Abstract: Traditionally, the engineers analyze signals in the time domain and in the 

frequency domain. These signal representations discover different signal 

characteristics and in many cases, the exploration of a single signal presentation is 

not sufficient. In the present paper, a new self-similar decomposition of digital signals 

is proposed. Unlike some well-known approaches, the newly proposed method for 

signal decomposition and description does not use pre-selected templates such as 

sine waves, wavelets, etc. It is realized in time domain but at the same time, it contains 

information about frequency signal characteristics. Good multiscale characteristics 

of the algorithm being proposed are demonstrated in a series of examples. It can be 

used for compact signal presentation, restoration of distorted signals, event 

detection, localization, etc. The method is also suitable for description of highly 

repetitive continuous and digital signals. 

Keywords: Self-similarity, digital signal decomposition. 

1. Introduction 

Sensors are the devices by which a process, a physical phenomenon or an object is 
observed. These devices encode the physical quantity being measured into signals. 
The signals as output of the sensors contain not only useful information, but also a 
lot of additional information related to the sensor device, namely: the process of 
measurement, transformation of one physical quantity into another, integration, 
sampling (a set of time instants at which the signal has value), digitization (the act of 
conversion of analog values to digital ones), time delay of the sensor output from the 
actual timing of phenomena being sensed, electronic or other type of noise in the 
sensor. Another part of the output information is generated by external factors such 
as noise due to the effects of the external environment such as electric and magnetic 
fields among many. All this requires careful selection of the way the output signal is 
presented in order to fulfill both requirements: 1) transmit information about the 
observed process as accurately as possible; 2) reduce the influence of undesirable 
factors on the useful information. 
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The purpose of the signal analysis is to collect, retrieve and understand the 
information carried by the signals. It involves different type of signal processing: in 
time domain, in frequency domain, and/or time-frequency domain.  

In the time domain, the signal is represented as variation of the amplitude 
through time. Analyzing signals in the time domain, we are able to detect signal 
events, eliminate/reduce interfering factors and amplify preferred signal features.  

However, sometimes the most interesting information is how many times an 
event occurs in the recorded period. The Fourier representation theorem [1] gives the 
mathematical foundation for extracting the signal frequency content. The signal is 
presented as a sum of sin waves with given amplitude, period/frequency and phase. 
In the frequency domain, we observe the signal amplitude/power versus frequency. 
However, spectral representation is associated with the loss of time information for 
signal events in the data being processed. In other words, this means that a part of 
signal (its cut in time) of a certain shape generates the same spectrum no matter where 
it is ‒ at the beginning of the investigated signal, in the middle, or somewhere at the 
end of the signal, the signal spectrum displays the total frequency properties 
throughout the interval. Therefore, the spectral representation of the signal does not 
provide information on the instantaneous (local) frequency characteristics of the 
signal. 

Another very important statement is that the main characteristics in each signal 
can be represented by a spectrum with a limited range. The Nyquist – Kotelikov 
theorem states that for a complete representation of a particular signal, the sampling 
frequency must be at least twice the frequency of the portion of the signal with the 
highest bandwidth. A valuable tool for spectrum analysis implementation is the Fast 
Fourier Transform (FFT) algorithm [2]. FFT is computationally efficient and 
provides acceptable results for discrete signals of limited length, but it has some 
fundamental drawbacks. The first one is narrow frequency resolution. It is in a 
reciprocal relationship to the sampling time interval. In other words, the spectral 
resolution does not depend in any way on the type of signals under consideration but 
only on the sampling rate. The second limitation is related to the "leakage" of the 
energy from the main lobe of the spectral band to the side lobes. This leads to 
distortion of the other spectral bands. One possible solution to this problem, or at 
least to reduce these distortions in the spectrum, is the implementation of window 
functions. This decreases the leakage at the expense of a lower frequency resolution 
[3]. The disadvantages of FFT are particularly pronounced in the processing of short 
signals. To avoid this, the signal is often artificially lengthened by zeros or copies of 
itself to facilitate the resolution of the problems described above. Another 
disadvantage of operating in the spectral domain is the problem, related to the 
presentation of discontinues functions (i.e. with an infinite slope at certain time 
instants). In this case, an infinitely large number of terms is required in order to 
represent properly these signals. 

In addition to the standard signal representation by a sum of periodic sine waves, 
there is also a signal representation by local support functions. Wavelet transform is 
one example for signal presentation by a certain orthonormal series generated by a 
wavelet. The main problem of wave analysis is the choice of a basis function. 
Appropriate representation could only be realized if we knew the properties of the 
signal being observed. With this signal representation, we get information about the 
frequency of waves used over time (the representation of signals in the time-
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frequency domain). The Heisenberg uncertainty principle applies to this signaling 
space ‒ the more selective waves have a narrower compact support (less selective 
over time).Wavelets are essentially equivalent to a short-time FFT with a Gaussian 
window function. Their advantages are better description of specific non-sinusoidal 
signals and lower computer load.  

In a number of cases, the above methods are unable to extract sufficiently 
descriptive information. Often, the search for “useful” information in huge amounts 
of data can be aided by segmenting the data. The key to successful data segmentation 
is to define correctly the boundaries of the segments. To this end, a more general 
model of signal pattern is usually created [4]. It includes various information such as 
signal shape, different signal statistics, autocorrelation of the signal, signal coherence, 
etc. [5]. 

Another important feature is the signal texture. It is used to describe regions 
with a repeating structure. Texture patterns can be predefined or adaptively selected 
from the signal being analyzed. 

The approach proposed in this article attempts to combine the positive 
characteristics of the methods listed above ‒ a clear description of the signal (as its 
presentation in time domain), obtaining an idea of signal frequency properties (as in 
frequency domain), extracting the texture of the signal (like texture analysis). To do 
this, the signal is segmented into parts with monotonous behavior. Then these 
segments are compared for similarity. If there are similar distinct sets of consecutive 
segments the segments from these sets are merged into larger ones. This process is 
repeated until the whole signal is divided into distinct repetitive segments. The 
proposed approach does not require pre-selected patterns. In addition, the presence 
of abrupt sudden changes in the signal derivative does not disturb the algorithm. This 
enables the newly proposed Self Similar Decomposition (SSD) method to be applied 
to digitally encoded signals. They can be presented in a very compressed form. 

The rest of the paper is organized as follows: A description of SSD algorithm is 
given in the next Section 2. The algorithm is explained on a sinusoidal function. Then 
the possible similarity metrics are discussed. The section ends with a description of 
the proposed segmentation procedure. Some experimental results are presented in 
Section 3. The selected examples demonstrate the main properties of the SSD 
algorithm. Section 4 discusses noise vulnerability of suggested algorithm and points 
out three main direction for SSD implementation. The computer load for real time 
implementation is estimated. The final 5-th Section gives a brief summary and 
conclusions. 

2. Self-similar decomposition of signals 

A signal is generated by a sensor in order to describe a measured physical process. 

Although the sensor signal and the observed process behavior are closely related, 

some distinctions are stemming from non-ideal acquisition process and they have to 

be considered, so as to correctly estimate the process parameters. How they can be 

reflected will be revealed in the next subsection. Usually, the sensor output is voltage 

that varies over time. The analogue sensor voltage is sampled in time by a predefined 

rate in order not to miss important changes in the process observed. The sampling 

procedure converts the continuous independent variable (usually it is time) of sensor 
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signal to discrete. Then the acquired measurements are quantized by Analog-to-

Digital Convertors (ADC) using a limited number of bits. The number of used bits 

determines the distance between adjacent quantization levels for signal presentation 

and influences the quantization error. The digital output data of ADC serves as an 

input of the SSD Algorithm. 

The place of the SSD Algorithm in the general scheme of signal processing is 

shown on Fig. 1. 
 

    

1. Raw sensor signal 2. Sampling 3. Quantization 4. SSD 

Fig. 1. General scheme of signal processing with SSD Algorithm 
 

The proposed algorithm for signal description is an attempt to combine the 

representation of the signal in both time and frequency domains. The basic idea is the 

same as for frequency and wavelet analyzes ‒ to decompose the signal into multiple 

repeating fragments of itself. The difference is that no pre-set functions are used ‒ 

sinusoids (in frequency analysis) or different basic wavelets (in wavelet analysis). 

Using some patterns of signal is not a new idea. There are two different approaches 

to describing signals. The first of them uses a set of a priori defined signal forms or 

dictionaries [4, 6, 7]. The received signal is usually divided into equal parts (at regular 

time intervals). Each part is classified according to its proximity to any of the 

templates. The second approach stems from fractal analysis, which seeks out the self-

similarity of a signal on different scales. This approach has limited application due to 

the relatively small number of fractal signals in practice. 

When looking for similarity, one of the most important steps is splitting the 

signal (segmenting). Different approaches have been described in the literature [4, 5, 

7, 8]. The most popular between them are similarity-based thresholding, histogram-

based thresholding and template matching. All of them presume a priori knowledge 

of some of signal characteristics that strongly restricts the flexibility of the chosen 

approach. 

The approach proposed in the present work can be considered as an extension 

of the fractal approach to signals of general form. No information is needed in 

advance. The proposed algorithm also attempts to group similar parts into connected 

regions. 

2.1. SSD Algorithm description 

The structure of SSD Algorithm is shown on Fig. 2. 

 

Fig. 2. Steps of SSD Algorithm 
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The first step of the algorithm is preliminary denoising and resampling, if 

necessary. 

Denoising is one of the most important stages of the algorithm. The noise 

inevitably accompanies the measurement process. It can be generated by random or 

unpredictable outside sources in measurement process, unwanted sensor signal 

disturbance caused by imperfect sensor electronics, by inappropriate sampling rate or 

wrongly chosen ADC. The presence of high levels of noise creates artificial extrema, 

which makes it difficult to detect actual ones, or at least leads to the localization of 

extrema with significant error. Many methods have been developed to minimize 

signal noise [9]. 

The classic analog noise filtering approaches are implemented in the form of 

low pass, high pass or band-pass/band-reject filters. The most popular among them 

are Bessel, Butterworth, Chebyshev filters, to mention a few.  

Digital filters provide significantly better performance in comparison with 

analog ones. The easiest way to implement a digital filter is by convolving the input 

signal with a filter kernel. This type of digital filters is also called FIR filter because 

of finite response from a filter kernel on a delta impulse. 

Another type of digital filter is the recursive one, which uses one or more 

previously calculated points beside the points from the input measurement stream. 

The recursive filter design considers a suitable choice of a set of recursion 

coefficients. The impulse response of a recursive filter is infinitely long (IIR filter). 

However, when the amplitude of filter kernel drops below the quantization noise or 

round off error, the remaining part can be ignored. 

The model-based filters are a big group of filters, using a priori information 

about observed process or system behavior. The parameters of the model equations 

are dynamically estimated in time maximizing the model consistency against 

received measurements. The most popular among these filters are AR, ARMA, 

ARIMA, Kalman, Extended Kalman filters and their numerous modifications.  

The abundance of filtering algorithms described above offers an opportunity for 

an optimal choice of the processing algorithm for given sensor signal and a specific 

type of noise. After denoising, the resulting output signal has to reflect the behavior 

of the observed process as accurately as possible.  
In order to enhance the accuracy in the segments' borders estimation, an 

upsampling and/or interpolation is performed. Different interpolation schemes can be 
applied. Linear interpolation is the best one for singularity signals (pulse train signals, 
rectangular, sawtooth, etc.). Spline interpolation is more suitable for smoother 
signals. Other types for interpolation can also be applied. The choice of suitable 
interpolation scheme may increase the computational cost, but higher accuracy of 
peak localization will be achieved. It is important to note that only an appropriate 
selection of interpolating functions and a suitable upsampling rate can improve the 
accuracy of the segmentation process.  

The upsampling indirectly resolves the problem with non-uniformly sampled 
signals. Non-uniform sampling occurs often in real life due to imperfect sensors, bad 
communication lines (loss of measurements), external disturbances, mismatched 
clocks, etc. 
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Before we start with the second step of SSD Algorithm, let us reveal the main 

idea of the algorithm. It is based on the hypothesis that the most important points in 

the observed signal from information point of view are its extrema. The information 

can be encoded in a signal in many different ways and in different domains. There 

are countless signal modulation techniques. Sometimes the information is hidden in 

the frequency domain, when the periodicity or the phase of some processes are 

described. But regardless the way of information presentation, it is encoded into the 

changes of the signal. The changes of a signal can be determined only by comparing 

the values of many points in the signal (their relationship). If we consider any two 

neighboring points in the signal (the smallest set to compare), there are only three 

possible states ‒ preserving the same value, growing or decreasing of the signal. The 

set of three neighboring points is a richer one, giving means to detect the transition 

of the signal from one state to another. We consider the signal state-change points as 

the most important information carriers and the proposed algorithm is built entirely 

on their use. These points are signal extrema, playing the key role for signal 

segmentation – they are the border points of the segments. The signal behavior on 

each segment remains the same – there is no change in the signal state. The accuracy 

of signal extrema localization is important for the quality of the segmentation.  

In the third step of the algorithm, the signal is divided into non-overlapping 

parts. Preparations for this action have been made at the previous step, when the 

signal extrema were determined. These extrema serve as boundary points of the 

segments. The proposed segmentation algorithm is characterized by two features: 

1) The length of the segment is determined only by the time between boundary 

extrema of this segment. 

2) The signal in each segment is characterized by its monotonicity. This fact 

directly follows from the fact that the segment is a signal bounded by two adjacent 

extrema: either from one minimum to one maximum or from one maximum to one 

minimum. 

Two more segments are added to the segments thus defined ‒ the first part of 

the signal (before the first extremum) and the last part of the signal (after the last 

extremum). The second property of the segments also applies to them ‒ they are also 

monotonic functions. 

The original signal can be easily recovered from the segments. Recovery 

algorithms can use either the start time of the corresponding segment or the order of 

the segments. The first algorithm is trivial, but the second should be explained in 

detail. Some denotations are involved for explanation of signal reconstruction by list 

of its segments. Let 𝑆 = {𝑠1
𝑚1 , 𝑠2

𝑚2 , … , 𝑠𝑛
𝑚𝑛}, denote the set of segments describing the 

signal. A segment 𝑠𝑖
𝑚𝑖 is indexed in the set 𝑆 with its number 𝑖 and the number of 

repetitions 𝑚𝑖. The signal can be reconstructed unambiguously if it is described by the 

list of its segments:  𝑗1, 𝑗2, … , 𝑗𝑘, where  𝑗𝑖 ∈ {1, 2, … , 𝑛}, and 𝑘 = 𝑚1 + 𝑚2 + ⋯ + 𝑚𝑛. 

Finding the repeatability of a segment is the subject of the fourth step of the 

algorithm. This is the most delicate step of the algorithm, which determines the 

degree of compression and on the other hand the quality of signal recovery after its 

decomposition. There are different approaches for determining the similarity 

estimation of two segments: matched filtering, correlation analysis, subtracting 
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signals, beam formation, etc. [10] to mention at least the main ones. The emphasis in 

the development of SSD is on its multiscale properties both in the magnitude of the 

signal amplitude and over time. 

The last step of the SSD algorithm consists of segment aggregation. It is applied 

over repeated two or more adjacent segments. These successive segments are 

combined as a supersegment and in the set describing the given signal are written as 

one element. In this way all found similar segments of double, triple, quadruple, ... 

n-tuples are aggregated. 

2.2. Recursive SSD Algorithm description on a demonstration example of sinusoidal 

signal 

The recursive mode of operation of the SSD Algorithm is demonstrated on a 

sinusoidal signal shown in Fig.3. Due to the use of a synthetic signal, noise filtering 

and resampling is not required, and this step is omitted. In the next step, all the 

extrema of the function, denoted by E, are determined. The index of the extrema 

denotes their sequential number in the signal. The extrema define the initial set of 

segments: 𝑆1 = {(𝐸1, 𝐸2), (𝐸2, 𝐸3), … , (𝐸𝑛−1, 𝐸𝑛) }. In this description, the index of 

the set of segments means the level (depth) of the recursive procedure. Each segment 

is described by the ordered pair of extrema (𝐸1, 𝐸2). For our demonstration example, 

the set is 𝑆1 = {(𝐸1, 𝐸2), (𝐸2, 𝐸3), … , (𝐸8, 𝐸9) }. The fourth step of the algorithm 

consists in finding similar segments, according to a given criterion. The search for 

close segments is performed in the set 𝑆1, selecting the segments sequentially 

according to their order in the signal. In our example, the process of determining close 

segments begins with the first detected segment (𝐸1, 𝐸2). When the criterion for 

similarity of the tested segment is not met even once for its pairing with all other 

segments in the set of segments, the check cycle ends, and this segment is left as an 

unique segment. Then the algorithm moves on to the next element of the set of 

segments. However, if the criterion is met, a new set of segments is formed at the 

next recursion level. This is done in several steps. 

First, the similar elements are indexed as used so that they are no longer used 

for checks at the same recursion level. In our example, four close segments are found 
(𝐸1, 𝐸2), (𝐸3, 𝐸4), (𝐸5, 𝐸6), (𝐸7, 𝐸8)(see Fig.3a) and based on them, a new set of 

segments is formed. 

The second step is to define the segments in the new recursion set. It consists of 

non-indexed (unused elements) that immediately follow the found similar elements. 

In our example, 𝑆2 = {(𝐸2, 𝐸3), (𝐸4, 𝐸5), (𝐸6, 𝐸7), (𝐸8, 𝐸9)} (Fig. 3a). For this set, the 

recursion procedure is called again, which looks for similar elements in the new 

segment set. 

These steps are repeated until the check passes all segments in the original set 

of segments or the set of non-indexed segments becomes empty. For our example, 

the similarity of the segments in 𝑆2 is also detected and thus the all procedure is closed 

due to the empty set of non-indexed segments.  
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(a) Segmentation process (b) Three primitive shapes describe the signal 

Fig. 3. An example for SSD Algorithm for sinusoidal function 

Summarizing the above, the first pass of the recursive procedure ends with  

the following initial results: 1) Detects similar segments 
(𝐸1, 𝐸2), (𝐸3, 𝐸4), (𝐸5, 𝐸6), (𝐸7, 𝐸8). 2) The set of segments  

𝑆2 = {(𝐸2, 𝐸3), (𝐸4, 𝐸5), (𝐸6, 𝐸7), (𝐸8, 𝐸9)} is formed and is subject to further 

analysis. Then the same recursive procedure is called again with 𝑆2 passed as input 

parameters. In the second call (at Level 2) of the recursive procedure, similar actions 

are performed but with the new set of segments. In our example, similar segments are 

searched for, starting with the first segment in the set according  order in the signal 
(𝐸2, 𝐸3). If the algorithm does not find similar to this one, it is declared as a unique 

one and proceeds to the next segment. In the sinusoidal signal example, however, the 

algorithm finds three similar segments (𝐸4, 𝐸5), (𝐸6, 𝐸7), and (𝐸8, 𝐸9). When a 

similarity is found, each recursion level except the first one starts a procedure for 

aggregation of those successive segments for which the corresponding similar 

sequence of segments were found. In our example there are 4 such “supersegments” 

– (𝐸1, 𝐸3), (𝐸3, 𝐸5), (𝐸5, 𝐸7), (𝐸7, 𝐸9). 

The result of the operation of the algorithm on a sinusoidal signal is shown on 

Fig. 3b. The sinusoidal signal is described by three segments: the first of the segments 

represents the beginning of the signal to the first extremum, the second segment is 

actually a “supersegment” and describes the sine wave from one maximum to the 

next maximum (completely unambiguously determines the sinusoidal signal), the 

third segment is the part of the signal after the last extremum to the end. 

2.3. Similarity measures 

The proximity measure of two segments determines whether two segments can be 

represented by only one of them or not. Similarity as a measure is defined in 

mathematics on the basis of congruence ‒ congruent objects are those that can be 

represented as linear transformations of one another, i.e., translation, rotation and 

reflection. When working with real signals, however, because of the presence of 

different interferences and noise, the signals can only be compared to some degree of 

similarity. In addition, the present work seeks such proximity measures that allow 

correct work on different scales, i.e., we are looking for similar, not identical 

segments. For this case of similarity, we speak of congruence up to a dilation. When 

we talk about the similarity of signals with precision to scale, we must take into 
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account both the scale of the amplitude of the signal and the scale in time (signal 

shrinking). 

There are many methods for similarity estimation. The most popular of them is 

correlation analysis. It detects linear functional dependency only. In the case of 

nonlinear dependency, the methods using multi-moment measures are applied: the 

mutual information approach [10] and its generalizations, such as dual total 

correlation [11], excess entropy [12], binding information [13], etc. In [14] the 

authors suggest a copula for more complex dependency analysis. 

In the present work we limit search only for proximity of multiscale signals. The 

linear regression analysis is an effective tool for solving this problem. The correlation 

coefficient is an estimate for the proximity of the two segments, and the slope of the 

linear regression line determines the scale factor. However, the direct application of 

this method will lead to a significant error due to the phase shift or different time 

scale. To overcome this shortcoming, the present algorithm resembles the 

measurements in such a way that there is a correspondence between the 

measurements in the two compared segments. Two cases are considered: 

1) Resampling without rescaling over time. In this case, it makes sense to 

compare segments of equal duration (over time). Therefore, the length of the 

segments (the number of measurements in them) is checked in advance and if it is 

different, the segments are considered to be different. In this way, a significant 

acceleration of the algorithm is achieved. When the same number of points is 

discovered, a resampling is performed, which equalizes the moments of time in which 

the values of the signals in the two segments are compared. 

2) Resampling with rescaling over time. We will introduce some notations. Let 

seg1(𝑡) and seg2(𝑡) denote the first and second segments for similarity check. They 

are defined in time as follows: seg1(𝑡), 𝑡 ∈ [𝑡𝑏1
, 𝑡𝑒1

] and seg2(𝑡), 𝑡 ∈ [𝑡𝑏2
, 𝑡𝑒2

]. In 

the general case, two segments can differ both in phase and in number of 

measurements (they can be of different duration). Let us consider the first segment 

as a basic and coordinate the measurements of the second segment to those of the 

basic one. This is realized by resampling the measurements of the second segment 

with a rating 𝑚𝑡1,2
=

𝑡𝑒1
− 𝑡𝑏1

𝑡𝑒2
− 𝑡𝑏2

. After resampling, the two segments are ready for 

similarity check. 

Different criteria for similarity check can be applied. Let us look at them in 

detail. Firstly the points from the two processed segments are denoted as: in segment 

seg1(𝑡) as 𝑠11
, 𝑠12

, … , 𝑠1𝑁
 and the points of the signal in segment seg2(𝑡) as 

s21
, s22

, … , s2N
. 

The Euclidean distance is the most popular one. It is computed as follows: 

𝑑2 = √∑(𝑠2𝑖
− 𝑠1𝑖

)
2

𝑁

𝑖=1

. 

Two other modifications have also been often used ‒ Manhattan distance and 

supreme norm. Manhattan distance is L1 norm and requires fewer computations: 
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𝑑1 = ∑|𝑠2𝑖
− 𝑠1𝑖

|

𝑁

𝑖=1

. 

Supreme norm (Chebyshev distance) is determined by the maximal distance of 

corresponding measurements: 

𝑑max = max|𝑠2𝑖
− 𝑠1𝑖

| , 𝑖 = 1, … , 𝑁. 

The Minkowski distance [16] is a generalization of the distances, described 

above: 

𝑑𝑝 = √∑ (𝑠2𝑖
− 𝑠1𝑖

)
𝑝𝑁

𝑖=1

𝑝

. 

If p=1, Minkowski distance transforms to Manhattan distance, while if p=2, it 

becomes Euclidean and when 𝑝 → ∞ it will be equivalent to Chebishev distance. 

All these distances are classical ones, but they cannot be applied when one of 

the compared signals is scaled or shifted.  

The Hausdorff distance [17, 18, 19] on finite sets is defined by: 

𝑑H = max
𝑠1𝑖

∈𝑠1

{ min
𝑠2𝑗

∈𝑠2

{𝑑 (𝑠1𝑖
, 𝑠2𝑗

)}}. 

The Hausdorff distance might allow some shift between measurements, 

belonging to the compared segments; some scaling and skew might also be allowed. 

If we want to consider the scale of the data, normalization has to be applied. The 

Mahalanobis distance criterion estimates the closeness, regarding normally 

distributed data: 

𝑑M = √
(𝑠2̅̅ ̅−𝑠1̅̅ ̅)2

1

𝑁
∑ (𝑠1𝑖

−𝑠1̅̅ ̅)(𝑠2𝑖
−𝑠2̅̅ ̅)𝑁

𝑖=1

. 

In calculation of Mahalanobis distance, the amplitude scale is normalized by 

weighting the difference between the means of the two segments' covariance matrix. 

Therefore, the Mahalanobis distance is scale invariant and it is a unitless measure, 

but the scale is measured using standard deviation. However, the problem of 

neglecting the presence of a constant composite in the measurements of one of the 

segments remains.  

Correlation analysis can also be used to estimate the similarity of two segments. 

It is applied over normalized functions. It is important to note that the normalization 

leads to multiscale capabilities of correlation analysis. Proportionally modified 

signals will be identified as being the same. The main parameter that is calculated is 

the correlation coefficient. A correlation coefficient with a value equal to 1 shows a 

perfect match (similarity) of the compared segments. Two uncorrelated signals will 

have a correlation coefficient equal to 0. Correlation analysis can also be applied to 

detect symmetric signals. Signals with mirror symmetry will have a correlation 

coefficient equal to -1. To calculate this coefficient, four correlation metrics are used 

‒ Pearson, Spearman, point-biserial and Kendall rank correlation. 

The Pearson correlation coefficient is calculated as  

𝑅 =
𝑁 ∑ 𝑠1𝑖

𝑠2𝑖

𝑁
𝑖=1 − (∑ 𝑠1𝑖

𝑁
𝑖=1 )(∑ 𝑠2𝑖

𝑁
𝑖=1 )

√[𝑁 ∑ 𝑠1𝑖

2𝑁
𝑖=1 − (∑ 𝑠1𝑖

𝑁
𝑖=1 )

2
] [𝑁 ∑ 𝑠2𝑖

2𝑁
𝑖=1 − (∑ 𝑠2𝑖

𝑁
𝑖=1 )

2
]

. 
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The Pearson correlation criterion is preferable for normally distributed 

𝑠11
, 𝑠12

, … , 𝑠1𝑁
 and 𝑠21

, 𝑠22
, … , 𝑠2𝑁

. The biggest Pearson correlation criterion 

downside is that 𝑅 = 0 does not imply independence. The implementation of the 

Pearson approach for similarity estimation avoids this drawback thanks to the fact 

that similarity estimation does not concern with the independence of data, but in 

similarity only. 

The Spearman correlation coefficient is the usual Pearson correlation 

coefficient, applied to the ranked measurements. The proposed segmentation 

procedure assures that the compared segments’ points are ranked, reducing Spearman 

correlation coefficient to Pearson criterion, given by the expression: 

𝜌 =
∑ (𝑠1𝑖

−𝑠1̅̅ ̅)(𝑠2𝑖
−𝑠2̅̅ ̅)𝑁

𝑖=1

√∑ (𝑠1𝑖
−𝑠1̅̅ ̅)2𝑁

𝑖=1 ∑ (𝑠2𝑖
−𝑠2̅̅ ̅)2𝑁

𝑖=1

, 

here 𝑖 denotes the index of measurements with tied ranks.  

Point-biserial correlation coefficient can be considered as equivalent to Pearson 

correlation coefficient when one of the sequences obeys some additional restrictions. 

That is why it cannot be considered here. 

Kendall rank correlation is measured using tau coefficient (τ) and it estimates 

the similarity of the orderings of the data in two sequences, ranked by each of the 

quantities. It could not be applied because of the monotonicity of the compared 

sequences, which will always give Kendal correlation coefficient equal to 1 or –1 (if 

time scale is considered). The only exception will occur when sequences contain 

constant parts, but even in this case, when the measurements are ranked by value and 

by time, the Kendal correlation coefficient will take one of the two values: 1 or –1. 

Regardless of which distance metric or correlation coefficient is used, a 

detection threshold has to be set. The detection threshold has to guarantee affordable 

false alarm rate when the hypothesis for similarity is true. The algorithms that apply 

normalization are preferable for similarity estimation. 

2.4. Signal segmentation 

One of the fundamental problems of digital signal processing is signal segmentation. 
Signal segmentation can be considered as dividing the signal into parts using some 
criterion. The quality of segmentation is determined mainly by the proper choice of 
criterion and the precision of segmentation. The adequately selected criterion will 
preserve desirable characteristics of the signal in segments. The suitable choice of 
segmentation criterion for signal decomposition on self-similar parts is also 
extremely important. The simplest segmentation methods use a preselected temporal 
interval to determine a segment of a specified length [20]. The more complicated 
algorithms look for points, where the signal changes. These points are characterized 
by unique features or by a change in the statistical parameters of the signal. Both 
approaches can use a priori defined models or adaptive estimates of the signal 
parameters. Almost all articles devoted on adaptive segmentation use the construction 
of a moving “window”. The main drawback of the moving “window” approach is 
hidden in the unfeasible requirement for continuous (smooth) movement. To 
overcome this problem, a more complicated criterion for segmentation is applied. It 
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estimates the segment border and the phase shift simultaneously [17, 18]. In spite of 
this, the realization of the algorithm becomes ineffective.  

The proposed here SSD algorithm avoids these negative aspects by performing 
segmentation without using fixed-length windows or constructing any models. The 
signal partitioning is defined by the detected extrema. The number of the initial 
(smallest) segments corresponds to the number of the found extrema minus one. The 
parts of the signal before the first found extremum and after the last one are ignored, 
because the first and the last measurement could not be considered feature points. 
The formation of a set from initial segments is only the first step of the segmentation 
procedure. After that, the similarity search is carried out and a sequential 
consolidation/integration of the smallest segments in bigger ones takes place. 

The segmentation process gives quite accurate results when the signal to noise 
ratio and the sampling rate are high enough. When these conditions are violated 
(small signal-to-noise ratio and/or low sampling rate), it will be especially difficult 
to estimate the segments’ borders precisely and the whole procedure may fail. In 
order to alleviate the noise influence, a low-pass filter has to be applied. An 
appropriate choice of a low-pass filter will remove the noise partially or entirely and 
will make the signal smooth with no noise-generated extrema. The low-pass filtering 
in the proposed algorithm may be regarded as an analogue of anti-aliasing filter, 
restricting the bandwidth of a signal in order to satisfy the sampling theorem over a 
given band. 

3. Experimental results 

Several examples have been selected for consideration in this section to demonstrate 

the basic properties of the proposed SSD Algorithm. Most signals are specially 

synthesized and without noise. Finally, the SSD Algorithm is applied to a real ECG 

signal to show its capabilities for working with real signals. 

After the demonstration of the algorithm on a sinusoidal signal in the descriptive 

part, here we will start the presentation of the algorithm on a sinusoidal signal with a 

linearly increasing amplitude (Fig. 4а). Despite the complex presentation of the 

signal, the SSD decomposes it again only with the help of a library of only three 

segments (Fig. 4b), demonstrating good scalability. 
 

  
(a) Segmentation (b) Four primitive shapes describe the signal 

Fig. 4. SSD Algorithm for sinusoidal function with linearly increasing amplitude 
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(a) Segmentation (b) Three primitive shapes describe the signal 

Fig. 5. SSD Algorithm for sinusoidal with linear trend 

  
(a) Segmentation (b) Three primitive shapes describe the signal 

Fig. 6. SSD Algorithm for sawtooth signal 

  
(a) Segmentation (b) Three primitive shapes, describing function 

Fig. 7. SSD Algorithm for rectangular pulse train 
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(a) Segmentation (b) Four primitive shapes, describing function 

Fig. 8. SSD Algorithm for sinusoidal function with time scale 

  
(a) Segmentation (b) Primitive shapes, describing an ECG signal 

Fig. 9. SSD Algorithm for an ECG signal 

The following figure (Fig. 5) shows a sinusoidal signal with a constant trend. 

Despite the presence of a trend, the SSD Algorithm again compresses the signal only 

in a library of three segments (Fig. 5b). 

Then two examples of digital signals are displayed. These signals are 

particularly unsuitable for description in the frequency domain due to the presence of 

interruptions in the signal derivative. A special feature in the processing of digital 

signals with SSD is the use of linear interpolation in resampling. Fig. 6 shows the 

decomposition of a sawtooth signal in a library of only three segments. Fig. 7 presents 

the results of the processing of a rectangular pulse train. The result is again with 

optimal performance - only three primitives. The examples clearly show the effective 

representation of digital signals, which are particularly convenient for SSD due to the 

high repeatability and limited set of the signal waveforms. 

The next demonstration example is selected specifically with a frequency 

modulated sinusoidal signal. Such a signal requires rescaling over time. The SSD 

Algorithm again decomposes the signal only in a library of three primitives (Fig. 8). 

The last example on Fig. 9 shows a SSD of a real bioelectrical signal, in this 

case ECG, which fluctuates and has noise. The algorithm successfully identifies the 

elements of the QRS complex (rising and falling slopes). 
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4. Discussion 

The presented experimental results demonstrate the effectiveness of SSD in the 

decomposition of repetitive signals. The SSD performance is especially good when 

working with digital signals. So far, the question of the sensitivity of the algorithm to 

the presence of noise has not been discussed. The general scheme of decomposition 

application assumes noise filtering at the system input (Fig. 2, step 1). This is due to 

the fact that the presence of noise in the signal degrades the operation of the algorithm 

simultaneously in two of its steps. The first deterioration is at the stage of signal 

extrema detection. The presence of noise degrades the accuracy of extremum 

localization. Moreover, high noise levels can lead to an exponential increase in the 

number of extrema, which will completely destroy the operation of the algorithm. 

The second vulnerability to the presence of noise in the signal is in determining the 

similarity of the segments. In this case, the standard signal processing methods apply 

an adaptive threshold selection (according to the noise level). This approach is 

feasible for implementation in the current algorithm as well. 

There are three main directions for further development of the algorithm. 

The first direction is the signal representation in a compact form. The algorithm 

allows storing the most important signal features. A very high compression ratio can 

be achieved, especially for artificial (man-made) signals. Furthermore, it is due to say 

there are no limitations, given by the form of signals (continuous, singular). The 

signal presentation in this format contains simultaneously the main signal features 

and their local frequency. The algorithm is recursive and easily realizable even in 

real-time. Required computational resources are minimal and the performance speed 

is high. The encoded signal describes the texture of the original one.  

The second direction is algorithm implementation for the restoration of signals 

that have been distorted in some way. The telecommunications in ad hoc networking, 

IoT, satellite systems, etc. are the targeted areas for application. When transmitting 

data over more or less insecure channels, there is often a loss or damage to the 

transmitted information. Error-correcting encoding helps to recover information, 

especially if the losses are in single bits or in small packets of bits. To this end, it is 

assumed that a sufficient surplus of data will be sent to restore the original data in the 

event of damage or loss of a certain amount of data. Recovering information for larger 

packets of bits requires a much larger resource that not every system or 

communication channel can afford. The newly proposed algorithm provides means 

for signal restoration using the information about the signal texture. The packet of 

lost information can contain extremal points or not. When the lost information 

concerns only one segment (Fig. 10a) it can be recovered using the preserved 

information of the closest (similar) to it another segment (Fig. 10b). If the lost 

information in the segment predominate over the remaining correctly transmitted 

information in the segment, one could also use neighboring segments to find the 

closest preserved signal texture.  
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(a) Segmentation of a signal with losses (b) Restoration of signal 

Fig. 10. Restoration of a signal with losses in a segment 

When the packet of lost information contains one or more extremal point  

(Fig. 11a) the surrounding segments are included and the signal is restored by filling 

the gap with the closest to its vicinity preserved signal texture (Fig. 11b). It is 

important to note that here the closeness is regarded again up to scale. 
 

  

(a) Segmentation of a signal with losses (b) Restoration of signal 

Fig. 11. Restoration of a signal with losses in two segments 

The SSD algorithm can also be applied for event detection and separation of 

signals (the third direction of development). Creating a library of mostly used 

segments or groups of segments, we can divide a signal into different parts, 

characterized with some specificity or different system/process behavior. The unique 

segments (without similar others) inform us about something unusual that happened 

at that moment. Thus, it may be used for registering events.  

The description of the SSD algorithm shows its low requirements for computer 

resources. The computer load for filtration remains hidden so far. We will use the 

available literature data to calculate the required computer resource for filtration [15]. 

The filtering in time domain requires the performance of O(n2) real multiplications 

and O(n2) real additions to perform a convolution. When the filtering is realized in 

the frequency domain, FFT is performed on the signal and the convolution function, 

followed by O(n) multiplications and inverse Fourier transform of the obtained 

results. As a result, the total complexity of the frequency domain filtering is  
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O(n×logn). When using a wavelet transform for filtering, the computational 

complexity can be reduced to O(n). 

Summarizing the above, we can say that the computational complexity of SSD 

is highest when applying filtering in the time domain O(n2), less when filtering in the 

frequency domain O(n×log n) and most effective when using wavelet filtering ‒ O(n). 

Analyzing this data, however, we must take into account the effectiveness of these 

algorithms to eliminate different types of noise. 

5. Conclusion 

This article proposes an approach for multi-scale associative signal decomposition. 

The approach is adaptive and does not work with pre-selected basic functions for 

signal description such as sinusoids, wavelets, etc. The proposed description is based 

on self-similar signal decomposition. The signal decomposition is performed in the 

time domain, but simultaneously an information is obtained about the repeatability 

of the basic elements, i.e., a frequency information is also gained. The proposed 

signal representation can be applied to the automatic detection of signals, for the 

purposes of classification, event localization, compression, etc. The approach is 

particularly effective when applied to repetitive signals of artificial origin like digital 

ones. 
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