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The sensitivity of a given mathematical object (or of the corresponding computational 

problem) is among its most important properties. It shows how the solution of the 

problem varies under the perturbations of small changes in the data. This property is 

subject of the so called Perturbation Theory which is widely used in Science and 

Engineering. In the separate scientific disciplines various perturbation theories have 

been developed which differ in the problems solved and mathematical methods used, 

for instance in the Celestial Mechanics, Theory of Nonlinear Oscillations and Control 

Theory. All these theories are based on the idea to investigate a system whose 

behavior deviates slightly from the behavior of a simple ideal system for which the 

full solution of the problem under consideration is known. Perturbation Theory for 

Linear Operators, which is relevant to the given case, was created by the physicists 

S t r u t t  and L o r d  R a y l e i g h  [17] and S c h r ö d i n g e r  [16] and the modern 

perturbation theory for linear operators is developed by K a t o  [7]. Although the book 

of Kato is written from functional analysis point of view, it contains useful material 

on the finite dimensional case as well.  

There are at least three sound reasons to study the sensitivity of various 

problems relative to perturbations in the data from a given class. 

 The perturbation analysis may give an independent and deep insight at the 

very nature of the problem, being therefore of independent theoretical interest. For 

example, the perturbation analysis may provide an estimate for the distance from an 

object of a given set, for instance the set of singular matrices or matrices with multiple 

eigenvalues [5].  
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 Perturbation bounds provide a realistic framework for most problems in 

mathematical modeling of objects and processes. Indeed, in practice there are 

inevitable measurement and other parametric and/or structural uncertainties. This 

means that we have to deal with a family of models rather than with a single model. 

In this case, the perturbation bounds give us a tube in the space of model’s 

characteristics, to which the characteristics of the particular model actually belong. 

Having a model with given parameters and estimates for their values, the only thing 

that we can rigorously claim is that the model will behave within the tube predicted 

by the perturbation analysis. 

 When a numerically stable algorithm is applied to solve a problem then the 

solution, computed in finite arithmetic, will be close to the solution of a near problem. 

Having tight perturbation bounds and a knowledge about the equivalent perturbation 

for the computed solution, it is possible to derive estimates of the conditioning of the 

problem and for the accuracy of the solution. Without such estimates a computational 

algorithm cannot be recognized as reliable from the viewpoint of modern computing 

standards. 

The book under review, published in the series “Computational Mathematics 

and Analysis” is devoted to the perturbation theory applied in Matrix Analysis and 

Control Theory. The matrix perturbation theory is based on the matrix analysis as 

presented in the classical books of G a n t m a c h e r  [6], L a n c a s t e r  and 

T i s m e n e t s k y  [14], and B e r n s t e i n  [1]. The most comprehensive book up to 

the moment presenting the matrix perturbation theory is the book of S t e w a r t  and 

S u n  [20] and other useful sources in this field are the works of B h a t i a  [2, 3]. The 

book of Konstantinov and Petkov is the first book which presents an original unified 

perturbation theory suitable for problems both in Matrix Analysis and Control 

Theory. The authors are well known specialists in this field who have published 

dozens of papers on the perturbation analysis of different problems in matrix analysis 

and control and co-authored the book [8]. They are also university teachers and have 

several successful students. The book presents a new and very efficient method for 

perturbation analysis called the Method of Splitting Operators and Lyapunov 

Majorants (MSOLM). This method was introduced in 1990 by the authors in [13, 15] 

and developed in several publications [9-12]. It is applicable to matrix objects and 

problems involving unitary (orthogonal in particular) transformations and matrices. 

It should be noted that such transformations are the “working horse” of the modern 

numerical methods for matrix computations. MSOLM is applied to the following 

important problems: 

 QR decomposition of a general matrix, 

 The Schur decomposition of a matrix, 

 The generalized Schur decomposition, 

 Condensed forms of Hamiltonian matrices, 

 Unitary (orthogonal) canonical forms of linear time-invariant systems in 

standard and descriptor forms, 

 Synthesis of state and output static feedback in linear time-invariant control 

systems, 

 Spectral analysis of matrices and matrix pencils. 
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Since 1994 the MSOLM has been used and generalized by several scientists for 

obtaining new or improved asymptotic and nonlocal perturbation bounds for a 

number of matrix problems, see for instance [4, 21]. 

The book consists of 10 chapters, References and Index. Briefly, its contents is 

as follows. In Chapter 2 the authors give the notation and preliminaries used later on. 

The basic perturbation problems in linear algebra and control which can be 

successively solved by MSOLM are described in Chapter 3. In Section 7 of the same 

chapter they study problems with non-unique solution in view of their importance in 

matrix decompositions and in the problem of synthesis of static feedback (modal 

control in particular) in linear multivariable systems. Section 8 is devoted to the 

construction of asymptotic (linear) and nonlocal (nonlinear) perturbation bounds. In 

Chapter 4 authors give the general statement of the perturbation analysis problem and 

present the MSOLM. A particular problem (the QR decomposition of a matrix) is 

considered in detail in Section 6. The application of this method to the perturbation 

analysis of the Schur decomposition of a square matrix is demonstrated in Chapter 5. 

A considerable attention is paid to the perturbation theory of the condensed forms of 

Hamiltonian matrices which is done in Chapters 6, 7 and 8. The perturbation analysis 

of orthogonal canonical forms of linear control systems is presented in Chapter 9 and 

the general problem of synthesis of linear static feedback in linear control systems is 

considered in Chapter 10. The references contain 166 titles in the area of matrix 

analysis and perturbation theory. 

The book is intended as a reference for specialists working in the fields of Matrix 

analysis and Control Theory. It may also be used in the development of specialized 

student courses in the above areas. 

Consider now the main contributions presented in the book. The basic tool for 

perturbation analysis proposed by the authors in details in Chapter 4 is the Method of 

Splitting Operators and Lyapunov Majorants. An important step of this method is the 

construction of an operator equation, which is equivalent to the perturbed problem. It 

is based on the splitting of a certain linear matrix operator L and its argument X into 

strictly lower, diagonal and strictly upper parts L1, L2, L3 and X1, X2, X3, respectively. 

The crucial fact here is that for the problems under consideration L1(X) depends only 

on X1 rather than on the whole matrix X. As an example, consider the perturbations 

in the factors Q and R of the QR factorization of a matrix where Q is unitary 

(orthogonal) and R is and upper triangular matrix. As it is well known, the QR 

decomposition is a basic tool in the rank analysis (including the numerical rank) of a 

matrix, as well as for reliable solution of linear algebraic equations, least squares 

problems and other important numerical problems. In this case the perturbations of 

the unitary factor Q are determined only by the zero strictly lower triangular part of 

the perturbed matrix R. Once we know the perturbations of Q, it is easy to find the 

perturbations of the upper triangular part of R. Fortunately, we have the same 

situation in all matrix and control problems listed above. The next step of MSOLM 

is the application of Lyapunov majorants. These majorants are used in the context of 

the analysis of operator equations arising in problems of nonlinear mechanics to 

establish existence and uniqueness conditions for the solutions of equations in 
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functional spaces as a preliminary step in the use fixed point topological principles. 

In this book they are implemented to derive rigorous nonlinear perturbation bounds. 

The cornerstone of the present book is the perturbation analysis of the Schur 

decomposition done in Chapter 5. As it is known, the Schur decomposition A = UTUH 

where U is unitary and T is upper triangular matrix is widely used in matrix analysis 

and in the numerical solution of the eigenvalue problem for n-th order matrices. The 

first results in this area are obtained by S t e w a r t  [18, 19] but the corresponding 

analysis requires manipulation of matrices whose size is n2 × n2. Using the MSOLM 

the authors derive for the first time norm-wise linear and nonlinear bounds for the 

perturbations in U and T which involve a matrix of order only n(n – 1) × n(n – 1). 

The bounds derived allow to introduce condition numbers for the corresponding 

quantities. The condition number reveals the sensitivity of the Schur form and allow 

to obtain accuracy estimates for the Schur decomposition computed in finite precision 

arithmetic. A fundamental result here are the estimates of the eigenvalue sensitivity 

which are found on the basis of perturbation bounds for T. The eigenvalue bounds 

and the corresponding eigenvalue condition numbers are determined without the 

usage of eigenvectors and may represent alternative to the well-known results in this 

important field. In my view, these new bounds can be put among the classical results 

of eigenvalue perturbation theory. This is a specific result for finding component-

wise perturbation bounds for the Schur form, which as a whole is still an unsolved 

problem. It is my opinion that the results of this Chapter can be extended further to 

find new estimates for the sensitivity of invariant subspaces which will make possible 

to develop a full theory for the perturbation analysis of the Schur form of a matrix. It 

is interesting to note that the preliminary results on the norm-wise perturbation 

analysis of the Schur form published in [13] inspired the well-known researcher  

J.-G. S u n  [21] to derive similar results for the generalized eigenvalue problem. 

One of the important and unsolved until recently problems in the matrix 

perturbation theory is the sensitivity analysis of the condensed (and canonical, in 

particular) forms of Hamiltonian matrices in respect to unitary similarity 

transformations preserving their structure. In the given case the usage of the Schur 

form does not solve the problem since the similarity action of the full unitary group 

destroys the Hamiltonian structure. As it is known, in constructing and studying of 

structure-preserving methods for structured problems it is important to analyze the 

influence of perturbations that are also structured. This assumes investigation of the 

problem of sensitivity (including determination of condition numbers) and of 

accuracy of the corresponding numerical methods. In the case of spectral analysis of 

Hamiltonian matrices it is necessary to study the sensitivity of the Hamiltonian-Schur 

form relative to perturbations preserving the Hamiltonian structure. In the given case 

these are perturbations which are in turn Hamiltonian matrices. These problems are 

investigated in Chapters 6, 7 and 8 of the book. In Chapter 8 the authors derive 

asymptotic (linear) perturbation bounds and in Chapter 7 they present non-local (non-

linear) bounds. The results obtained can be applied to various problems including the 

numerical analysis of matrix Riccati equations. 

The next two Chapters 8 and 9 are devoted to perturbation problems arising in 

Control Theory and involving matrices. In Chapter 9 the authors present a 
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perturbation analysis of the orthogonal canonical forms used in the analysis and 

design of linear control systems. After precise definition of the notion “canonical 

forms” they derive local and non-local estimates of the perturbations in single-

input/single-output canonical forms. On the basis of these estimates they introduce 

for the first time condition numbers characterizing the sensitivities of the 

corresponding terms. The perturbation analysis, presented in Section 5 of this Chapter 

is much more difficult due to the non-uniqueness of the canonical form in this case. 

The results obtained for the multi-input case are based on a specific regularization 

technique using the perturbation in the system controllability matrix and the notion 

of a numerical structure of a multi-input system. In this case only perturbations 

preserving the numerical structure are considered. Numerical examples are given that 

illustrate the results of the analysis.  

In the next Chapter 10 the authors present complete sensitivity analysis of the 

output and state feedback synthesis problems for linear multivariable systems, the 

pole assignment problem being studied in particular. Local linear and non-local 

nonlinear perturbation bounds are derived using the Schur form of the closed-loop 

state matrix. The local bounds are given not only in terms of condition numbers but 

using special homogeneous functions which give better results. The approach is based 

again on the technique of splitting operators which makes possible to get perturbation 

bounds for basic problems in matrix analysis and control theory. 

In Summary, in this book the authors present new, original results in 

perturbation linear algebra and control, based on the Method of Splitting Operators 

and Lyapunov Majorant Functions. Combined with the Schauder or Banach fixed 

point principles, this method allows to obtain rigorous non-local perturbation bounds 

for a set of important objects in matrix analysis and control theory. Thus, the 

perturbation problems in these important fields are investigated in a uniform way, 

which presents a significant contribution to perturbation theory. As a direction of 

further work, I would recommend to extend the results obtained to the case of 

component-wise perturbation analysis in order to find perturbation bounds for the 

individual super-diagonal elements of the Schur form and for the angles between the 

perturbed and unperturbed invariant subspaces of the matrix. This will allow to 

develop full perturbation theory in this important form and go deeper into the 

properties of the corresponding problems.  
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