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Abstract: For cloud providers, workload prediction is a challenging task due to 

irregular incoming workloads from users. Accurate workload prediction is essential 

for scheduling the resources to the cloud applications. Thus, in this paper, the authors 

propose a predictive cloud workload management framework to estimate the needed 

resources in advance based on a hybrid approach, which is a combination of an 

improved Long Short-Term Memory (LSTM) network and a multilayer perceptron 

network. By improving the traditional LSTM architecture by using opposition-based 

differential evolution algorithm and dropout technique on recurrent connection 

without memory loss, the proposed approach has the ability to perform a better 

prediction process. A novel hybrid predictive approach is aiming at enhancing the 

prediction performance of the cloud workload. Finally, the authors measure the 

proposed approach's effectiveness under benchmark data sets of NASA and 

Saskatchewan servers. The experimental results proved that the proposed approach 

outperforms the other conventional methods. 

Keywords: Cloud computing, Improved LSTM neural network, Multilayer perceptron 
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1. Introduction 

Nowadays, cloud computing has become one of the major technologies in the 

research community, educational institutions, entertainment, business, and has 

become a primary part for users and organizations that are completely dependent on 

cloud based applications. Cloud technology provides computation-processing 

resources to processing the data aimed to achieve high-performance computing. In 

cloud computing, mainly three kinds of services are available such as Software-as-a-

Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). 

However, in present days cloud technology extends its services, called Everything-

as-a-Service (XaaS). Virtualization is the primary feature of cloud computing 

technology, enabling the physical data center as a dynamic virtual resources such as 

combining network resources, storage resources, and heterogeneous computing 
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resources to be distributed. These advantages of virtualization technology can 

provide different kinds of vigorous expansion, resources automatic deployment, 

resource provisioning according to needs. The resource allocation process is a major 

part of the cloud data center, which has significant practical value. This process can 

save energy consumption, reduce computing costs, and enhance resource utilization 

efficiency. With the help of virtualization technology, it can create multiple or the 

same configuration of Virtual Machines (VMs) on a single cloud data center. And 

also, with the help of the VM migration process effectively, we can reduce the 

computing cost and power consumption. The primary objective of cloud computing 

technology is to provide on-demand services while meeting economically to both 

cloud consumers and cloud providers. 

In cloud computing technology, elasticity is one of the main components to 

provisioning resources dynamically based on the workload. With the help of this 

feature, the cloud resource management framework can perform scaling operations 

to satisfy the demand for cloud applications. In the cloud service business, several 

services providers like Amazon EC2, Microsoft Azure, Google App Engine, 

Salesforce Developers, and IBM bluemix, etc. provide flexible scaling resources. The 

dynamic allocation of resources can be performed in two ways, like a reactive 

approach and proactive approach [1]. In the process of a reactive approach, cloud 

users can fix the threshold values for under-utilization and over-utilization of 

resources. Whenever the workload value meets the threshold value, then the auto-

scaling process performs the action according to the current state of resources, like 

remove the virtual machines from cloud services for an under-utilization state or 

adding the virtual machines to cloud services for the over-utilization state. The main 

drawback of this process is that the auto-scaling process faces difficulties in 

performing the scaling operations in the situation of sudden fluctuations in workload. 

On another side, a proactive approach performs resource scaling operations in 

advance [2]. The cloud resource management forecasts each cloud service's future 

workload and allocates the resources to their cloud services according to the predicted 

value. Currently, different kinds of prediction approaches are available to predict the 

future workload in the cloud environment. Few types of machine learning approaches 

are being used for estimating future workload such as ARIMA method, Bayesian 

method, Support vector machine, Random forest, and Artificial neural networks, etc.  

However, deciding the exact amount of resources with proactive approaches 

during execution time for cloud services is a challenging task and also not trivial. Due 

to the irregular access to cloud service offered by a SaaS provider, the cloud services 

get the fluctuations in workload. This kind of situation can lead to either over-

provisioning or under-provisioning of resources. In an over-provisioning state, more 

resources will be allocated to cloud applications than needed resources. In the view 

of Service Level Agreements (SLAs), it is an advantage for cloud users but for SaaS 

providers, it is an unnecessary cost and leads to high power consumption and CO2 

emission. In the under-provisioning state, fewer resources will be allocated to cloud 

applications than needed resources, which lead to SLA violations, dropping the 

Quality of Services (QoS), and finally, the loss of consumers and revenues. So, an 
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efficient, proactive approach must predict the accurate future needed resources to 

reach the QoS.  

In order to deal with the issues mentioned above, this paper proposes the 

development of a hybrid predictive approach to predict the future workload with a 

high accuracy rate, which is a combination of an improved LSTM network and a 

multilayer perceptron network. Instead of using a single prediction model to handle 

the irregular workloads, the proposed model uses a hybrid approach with higher 

prediction performance over conventional deep learning models. In machine learning 

methods, deep learning methods have outstanding potential ability in the prediction 

domain. The LSTM network is one of the sophisticated methods among deep learning 

methods to effectively deal with time series due to the ability to manage long-term 

dependency sequences. As a result, the LSTM network has been successfully adopted 

into many domains, such as speech recognition, artificial intelligence, handwriting 

recognition, and disease diagnosis, etc. Thus, this paper mainly focuses on the LSTM 

network’s ability to extract the nonlinear workload patterns in the cloud workload 

prediction domain. The main differences of this proposed work from conventional 

deep learning models is that: (a) the improved LSTM network which can extract the 

nonlinear workload patterns effectively while other predictors are conventional 

neural networks; (b) the proposed framework adopted an Opposition-Based 

Differential Evolution (OBDE) algorithm in which the Opposition-Based Learning 

(OBL) method is used to identify the opposition point of each population of 

Differential Evolution (DE) algorithm. This OBDE algorithm identifies the 

optimized neuron count in each hidden layer and batch size, which can influence the 

prediction ability of the LSTM network. Compared with the trial-and-error approach, 

the OBDE algorithm is able to provide more suitable solutions to enhance the 

performance of LSTM network; (c): In the view of regularization of LSTM networks, 

dropout has been applied directly on recurrent connections, which does not lead to 

loss of long-term memory; (d): Instead of using single prediction model, the proposed 

hybrid predictive model has more capability to get higher accuracy results. 

The main contribution of this paper are presented as follows: 

1. To deal with the issues of conventional deep learning models, a novel hybrid 

predictive approach is developed to handle irregular incoming workloads, which is a 

combination of improved LSTM network and multilayer perceptron network. 

2. To tackle the optimization issue in neural networks, the proposed approach 

has taken the advantages of the Opposition-Based Differential Evolution (OBDE) 

algorithm, which is a combination of Opposition-Based Learning (OBL) and 

Differential Evolution (DE) algorithms. The adopted algorithm helps to set the 

number of neurons in each hidden layer and batch size so that LSTM network will be 

optimized in efficient way. 

3. To enhance the robustness and generalization performance of the LSTM 

network for improving the predicting ability, the proposed LSTM network used the 

dropout method directly on recurrent connections without losing long-term memory. 

4. Finally, to evaluate the proposed approach’s performance experiments have 

been conducted under benchmark data sets of NASA and Saskatchewan servers 

HTTP request arrival rates for multiple prediction intervals. The proposed prediction 
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approach results are compared to different prediction algorithms. The experimental 

results proved that the proposed prediction approach can learn the nonlinear workload 

structure, along with a good accuracy rate, and outperforms the other prediction 

approaches.  

The rest of the paper structured as follows. In Section 2, related work is 

presented. The methodology of algorithms is presented in Section 3. A proposed 

method is presented in Section 4 with architecture. Section 5 is presents results and 

experimental analysis. Finally, conclusion of the paper are explained in Section 6.  

2. Related work  

In cloud computing, a workload prediction is a challenging process, and many of the 

researchers addressed the different solutions in two ways, such as traditional statistics 

and history based forecasts. In traditional statistics, the future value is defined based 

on average methods. In another way, machine learning algorithms analyze the 

complete data to determine future value. Many conventional models have been used 

for workload prediction in cloud computing. Advanced proposed approaches are 

based on machine learning algorithms, able to analyze a large amount of data in cloud 

environments [2]. Few algorithms are AutoRegressive Integrating Moving Average 

model (ARIMA), Artificial Neural Networks (ANN), Bayesian model, Markov 

models, Random forest method, Support Vector Machine (SVM) model, K-Nearest 

Neighbor (KNN) model, and reinforcement learning model, etc.    

In the view of the machine learning domain, in [3], the authors proposed an 

improved Linear Regression (LR) to estimate the number of request arrival rate for 

each cloud application. The proposed linear regression model works based on the 

self-adaptive parameters. Whenever workload fluctuations occur, the proposed 

model sets the new computation parameters for the linear regression model. In [4], 

the authors proposed a bin-packing algorithm to handle the VMs. At the first stage, 

the proposed approach finds a suitable physical machine to deploy the VM based on 

the predicted memory usage of VM. In the next stage, all physical machines will be 

minimized based on the future memory usage of each VM to provide sufficient 

memory for a new VM. To predict the future memory usage of VM, the authors used 

the AutoRegression (AR) model and to deploy the VMs into a physical machine used 

bin-packing algorithm. The main feature of this model is VM parameters updated 

frequently for each new VM. In [5] the prediction algorithm using neural networks is 

proposed. The method being proposed estimates the future needed CPU utilization 

for each cloud service. So that, SaaS providers are able to allocate the correct amount 

of resources to each cloud service in advance. In [6] a framework to estimate the 

resource demand is proposed. This framework includes different prediction 

algorithms such as Exponential Moving Average model (EMA), Second Moving 

Average model (SMA), Trend Seasonality model (TS), AR model, and Fuzzy Neural 

Networks (FNN). In the first stage, resources demand is predicted using the EMA 

model, SMA model, TS model, and AR model. Finally, all predictor values are sent 

to an FNN model. The FNN model is optimized by clustering algorithms. The authors 

propose the queuing network models to predict the performance of the cloud 
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applications in [7]. The proposed model uses request rate and average resource 

requirements for requests as parameters. The queuing model being proposed is 

mainly used to predict these parameters. Authors in [8] propose a resource-

provisioning framework for cloud services. To avoid SLA violations, the authors 

present a framework based on neutrosophic soft-set and fuzzy neutrosophic soft-set 

methods. The authors propose a framework for provisioning the VMs in [9]. In the 

framework being proposed, a workload analyzer estimates the request arrival rate 

using previous historical workload data. It also predicts the request arrival rate reject 

ratio and response time. If the predicted parameters lead to SLA violations, the 

proposed framework updates the allocated VMs to a cloud service. 

The authors propose a prediction approach in [10] to predict the server workload 

based on the autoregression model, but this approach being proposed is only suitable 

for the linear structure of workloads. In [11] a prediction model using the ARIMA 

model is proposed. In this framework, the authors mainly focus on the scaling process 

of resources. To perform the scaling operations in advance, authors use the ARIMA 

model to predict the cloud service workload. In [12], authors propose a prediction 

model based on the regression technique to predict broadcast service workloads for a 

live sports event. The approach proposed uses a simple linear regression model that 

might not handle the complex irregular incoming workloads. The authors propose a 

workload prediction model based on the two-stage neural networks in [13]. Later, 

authors use the neural network regression model to predict the future utilization of 

resources. Finally, the VM manager performs the scaling operations based on future 

utilization value. In [14] a prediction model for multiple time series models is 

proposed. The authors use the Hidden Markov Model (HMM) as a predictor, and this 

model also does a clustering of similar time series to optimize the execution time. In 

[15] a framework based on the support vector machine and self-organizing map 

methods is presented. At the first stage, the self-organizing map method is used to 

group similar data from different regions. In the next stage, the support vector 

machine method is used as a predictor to estimate future data. However, this approach 

maintains the threshold values to determine the data points in different regions, which 

may lead to an inconsistent accuracy rate. In [16] authors use K-nearest neightbors 

method as a final predictor, to predict the time series of different workloads. The 

method proposed is a two-tier architecture to analyze the incoming workloads, but it 

needs high computational resources due to lazy learners.  

Authors propose an ensemble algorithm for workload prediction in [17]. In this 

ensemble model, authors use five different prediction algorithms to predict each 

cloud service's workload. Each prediction model contributes the future values based 

on the assigned weights. In [18] a prediction framework is proposed to perform the 

scaling operations in advance. The framework proposed also focuses on to avoid SLA 

violations. Authors propose a prediction model using a sliding window, linear 

regression, and artificial neural networks in [19]. The main aim of this approach is to 

predict the future CPU usage of demand traces. In [20] a model is proposed, based 

on improved genetic algorithm to improve virtual machine selection performance 

while achieving the load balancing in the cloud data center. Authors propose a 

prediction algorithm to predict the future usage of resources based on the 
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backpropagation neural networks in [21]. This model proposed uses another 

stochastic model to improve the performance of the predictions. In [22], authors 

propose an enhanced evolutionary algorithm to avoid SLA violations. The framework 

proposed is a combination of adaptive resampling genetic algorithm and stochastic 

prediction model. In [23] a workload prediction framework is presented, using the 

steepest descent learning algorithm and artificial neural networks. The model 

proposed addresses the solution for the time delay in neural networks. In [24] a 

workload prediction model is proposed, based on a backpropagation learning 

algorithm with neural networks. The backpropagation algorithm helps to reduce 

prediction errors while adjusting the weights of the network. Authors propose a 

hybrid approach for effective resource provisioning in cloud environments in [25]. 

This hybrid resource provisioning approach is a combination of autonomic 

computing and reinforcement learning. The proposed approach is used to estimate 

the request arrival rate for each cloud service.  

Machine learning algorithms are more efficient for long-term predictions, and 

the integration of different learning algorithms can provide significant workload 

predictions. The main drawback of conventional and existing solutions is the lack of 

the ability for long-term predictions. This ability would significantly improve the 

business of cloud environments. For this purpose, we present a novel Hybrid 

Predictive Cloud Workload Management Framework (HPCWMF) using an 

improved LSTM network. 

3. Methodology 

In this section, the associated theories and developed methodologies are presented as 

follows: data preprocessing method, improved LSTM network, opposition-based 

differential evolution algorithm to optimize the LSTM network, and dropout 

mechanism for recurrent connections, and multilayer perceptron network. 

3.1. Data preprocessing method 

The data preprocessing method is the initial step in the process of prediction. In the 

first stage, extract the HTTP requests from the two data sets, and aggregate them as 

a time interval. To conduct the various experiments, work with different time interval 

units such as 5, 10, 15, 20, 30, 45, and 60 minutes intervals. To normalize the data in 

the range of (0, 1), we used the min-max normalization equation, as shown in (1). In 

(1), Xmin and Xmax refer to the dataset’s minimum value and maximum value. After 

the normalization process, normalized data are considered as input for the network as 

shown in (2). Further, the input data is divide into two data sets, such as training and 

testing datasets, 

(1)   
minmax

min

XX

XX
X i

i



 ,  
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(2)    

0.93 0.84 0.75 0.62 0.75

0.84 0.75 0.62 0.75 0.71

0.75 0.62 0.75 0.71 0.69
.

0.62 0.75 0.71 0.69 0.68

0.75 0.71 0.69 0.68 0.57

 
 
 
 
 
 
 
 
  

 

3.2. The improved LSTM neural network 

In ANNs, many networks have the capability to learn only limited patterns from 

independent variables such as inputs and outputs. The Recurrent Neural Network 

(RNN) are able to solve this issue with memory features. With this significant feature, 

RNN networks can elicit required patterns in data. RNN has the capability to store 

memory since its current output is dependent on the former computations. However, 

RNNs handle only a few previous timestamps due to exploding and vanishing 

gradient issues, which means RNN faces difficulty learning long-term dependencies. 

The past information exponentially disappears from memory while increasing time 

steps. The Long-Short Term (LSTM) network is proposed to solve the exploding and 

vanishing gradient issues in RNNs while handling with long-range dependency data. 

The LSTM network is one kind of deep RNN model which is composed of LSTM 

units with memory cells. The LSTM network structure is presented in Fig. 1. In 

LSTM network, memory Cells (C) are additional features to handle long-range 

dependency data. So that in LSTM network can be performed read, write, and reset 

data operations for memory cells. To perform these operations, LSTM has special 

kinds of gates such as Input gate (It), Forget gate (Ft), and Output gate (Ot). These 

three gates decide which information flows into and out of the memory cell. If the 

gate value equals to 0, then the signal is stopped by the gate. These computation steps 

are as follows:  

Forget gate decides what information will be removed from the cell state, where: 

xt is current input and ht–1 represents the previous output of cell state at time t; Wf is 

weight, and bf refers to a bias of the forget gate; σ represents the sigmoid function 

which gives either 0 or 1 as an output. Here, if Ft equals 0, which means completely 

get rid of the data, otherwise completely keep the data,  

(3)   f 1 f( [ , ] )t t tF W x h b    . 

Likewise, the input gate (It) decides what new information from the input will 

be updated or added to the cell state by using Equation (4) to compute new candidate 

values ( tC
~

) for memory cell. Hyperbolic tangent function as shown in Equation (5) 

is used, to update new cell state (Ct) from the old cell state (Ct–1) “×” is used, which 

means point wise multiplication as shown in Equation (6):  

(4)   )],[( 1 ittit bhxWI   , 

(5)   )],[(tanh
~

1 CttCt bhxWC   , 

(6)   1 ttt CFC + tt CI
~

 . 
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Fig. 1. The LSTM neural network structure 

Output gate (Ot) controls the cell state information to flow into the outputs, as 

shown in Equation (7), which means Ot decides which part of the cell state 

information to flow into the outputs. Finally, the output of the LSTM cell (ht) uses a 

hyperbolic tangent function to calculate the final output, as shown in Equation (8):  

(7)   o 1 o( [ , ] )t t tO W x h b    , 

(8)   )(tanh ttt COh  . 

For the next time step, a new cell state (Ct) and hidden state (ht) will be 

transferred to the next LSTM cell, as shown in Fig. 1. The network modifies weights 

and biases values by minimizing the errors between actual and predicted values. 

3.2.1. OBDE based optimization of LSTM network 

LSTM is a sophisticated network of RNN networks that solve the exploding and 

vanishing gradient issues. LSTM network contains a memory block that can deal with 

long and short-term time series. LSTM networks provide a clearer structure for data 

analysis than conventional deep learning methods. However, they need proper 

training. Different hyperparameters of the LSTM network can influence the 

prediction performance, so the selection of these hyperparameters should be based 

on an intelligence algorithm to improve the prediction performance. Among many 

parameters of the LSTM network, the number of neurons in the hidden layer(s) and 

batch size plays an important role. The number of neurons in the hidden layer will 

determine the result of data fitting. The batch size number will influence the effect of 

either over-fitting or under-fitting of training data. If the batch size is small, then the 

training data face difficulty in the convergence of data, which leads to under-fitting, 

and on the other side, if the batch size is large, then the size of memory will increase. 

For example, the number of neurons in the hidden layer is within the range of  

(1, 200), and the batch size range is (1, 200) then a total of 40,000 computations will 

be done. To deal with this issue, an evolutionary algorithm along with opposition-
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based learning is adopted to select optimal parameters for the LSTM network to 

reduce the computational time and improve the prediction performance.  

The Opposition-Based Learning (OBL) is a significant new searching technique 

in the optimization process, proposed by T i z h o o s h  [26]. In the optimization 

process, the OBL technique finds the best candidate solution by comparing the 

present candidates and corresponding their opposition candidates. With this 

technique, instead of starting with one random guess solution, the OBL algorithm 

also simultaneously considers its opposite solution. By doing this, the closer one to 

solution (say guess or opposite guess) can be chosen as initial solution [27]. It also 

helps to reach a global optimum solution. The mathematical definition of the OBL 

technique is as follows: 

(9)   x


 = lb + ub – x, 

(10)   ix


= lbi + ubi – xi. 
 

 
Fig. 2. Opposition theory for one and two dimensional space  

Let x be a real number in [lb, ub], then its opposite is x


, set as in (9) where lb 

and ub are lower bound and upper bound respectively. Similarly, this method can be 

applied to evolutionary dimension space also as in (10). Let P(x1, x2, x3, …, xM) be a 

point in M dimensional space, where x1, x2, x3, …, xM are real numbers and  

xi[lbi, ubi]. Then, the opposition point is ix


, set as in (10). Fig. 2 represents the point 

and its opposite in one and two dimensional space. 

In our approach proposed, two dimensional space is considered, so point P is 

defined as P(number of neurons in hidden layers, batch size). Instead of providing 

one random point to the differential evolution algorithm, the OBL technique provides 

its opposite point also simultaneously to reach a global optimum solution. Fig. 3 

represents the process of the opposition-based initial population for the differential 

evolution algorithm. The point P and its opposite point P


, both are evaluated 

simultaneously using fitness function and the fittest point will be selected for the next 

process. For example, f(x) is the objective function and g(x) is the fitness function. 

For point P(x1, x2) and its opposite point P


( 1x


, 2x


), compare the fitness value 

between g(P) and g( P


). The point which has smallest error value will be considered 

for the production of new candidates. The fitness value is measured and evaluated 

using Mean Squared Error (MSE) as shown in the next equation, where iy  and iŷ  

are actual and predicted values at time i and N is the total number of samples:   
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(11)   MSE =  



N

i

ii yy
N 1

2)ˆ(
1

. 

 

 

Fig. 3. Opposition-based population initialization for DE Algorithm 

In Evolutionary Algorithms (EA), candidates are initially generated randomly, 

and later algorithms produce a new best candidate as a solution. With this principle, 

different metaheuristic algorithms have been developed, such as Genetic Algorithm 

(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and 

Differential Evolution (DE), etc. In this category, the DE Algorithm is a reliable and 

intelligent algorithm to train the neural networks. Many researchers adopted a DE 

algorithm to train the neural networks in different domains. Unlike other evolutionary 

algorithms, the DE algorithm has the capability to learn better mutation strategies and 

optimal crossover rates. In the approach proposed, DE algorithm is used to set the 

number of neurons in hidden layers and batch size of the LSTM network rather than 

set them by trial and error, which may lead to expensive computation process. By 

conducting numerous experiments, the count of the neurons considered in hidden 

layers is in the range of [10, 50], and batch size is in the range of [32, 120] in this 

paper. The process of DE optimization algorithm is elaborated as follows:  

Input: OBL based iNitial Population (NP), mutation (F) and Crossover Rate 

(CR), and lower and upper bound of search space (ub, lb). 

Output: The optimized neurons count of hidden layers and batch size for LSTM 

network.    

Step 1. Initialization: The opposition-based initial population Xt (t=0) presenting 

different neurons count of hidden layer and batch size. Xt = {X1,t, X2,t , …. , XNP,t} 

where NP (i = 1, 2, 3,…, NP) is the population size and t is the generation number. 

Here i-th individual in Xt represents Xi,t = {xi,1,t, xi,2,t, … , xi,D,t} where D  

(j = 1, 2, 3,…, D) is the dimension of search space.  

Step 2. Calculate the fitness value (MSE error) of each individual in X0 using 

fitness function (using (11)). 

Step 3. Mutation: Generate mutated individuals using (12) on Xt, mutated 

vectors Vt = {V1,t, V2,t, ... , VNP,t}; “rand/1” mutation strategy used to generate mutated 

vectors, 

(12)   tiV , = tX ,1 + F * ( tt XX ,3,2  ), 

where X1,t, X2,t and X3,t are different vectors randomly selected in the range of (1, NP) 

and F is the mutation factor.  
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Step 4. Crossover: Generate the trail vector Ptrail = {P1,t , P2,t , …. , PNP,t} based 

on binomial crossover operation on Xi,t and Vi,t:  

(13)   tjip ,, = 
, , rand

, ,

if rand (0,1) Cr or ,

otherwise,
i j t j

i j t

v j j

x

 



 

where randj is the random value in the range of (0, 1) for j, Cr is the crossover rate 

and jrand  is the random value in the range of (1, D). 

Step 5. Calculate the fitness value (MSE error) of each individual in Ptrail using 

fitness function (11). 

Step 6. Selection: Compare MSE value of Xi,t and Pi,t, then selection operation 

choose the best individual for the next generation which has lowest error rate:  

(14)   1, tiX = 
, , ,

,

if fit( ) fit( ),

otherwise.
i t i t i t

i t

P P X

X





 

Step 7. t = t+1. 

Step 8. If stopping criteria is satisfied then get the optimal number of neurons 

count of hidden layers and batch size of LSTM network, otherwise go to the Step 3. 

3.2.2. Applying dropout without memory loss in LSTM network  

Deep neural network structures contain a large number of parameters with multiple 

hidden layers so that networks can analyze a large amount of data within a short time 

and also to be able to learn different relationships between input data and output data. 

Sometimes, these computation relationships can lead to noise issues in the training 

period, which may lead to overfitting problem. In neural networks, overfitting is a 

complicated issue, and several approaches have been proposed to avoid it. One of the 

traditional methods is stopping the training process of the model as the model starts 

to get worse on a validation set. Few more approaches, such as the soft weight sharing 

method and L1 and L2 regularization methods, help to avoid overfitting issues. 

However, training architectures with different hyperparameters is challenging due to 

different hyperparameters for each architecture, and these architectures take more 

time for computation. Even large networks have the capability to train network, but 

at test time, networks may find it difficult to respond quickly.  

The dropout method helps to avoid the issues mentioned above. The dropout 

technique provides a way of combining different types of neural network 

architectures effectively with different hyperparameters while avoiding overfitting 

issues. During the training of the network, dropout technique drop units (neurons) 

along with neuron connections. The main idea of the dropout technique is to remove 

the neurons and their incoming and outgoing connections duration of training period. 

The selection of neurons to remove is random. In other words, each neuron is retained 

with a probability p where p can be set as in the range of (0.1, 1). Applying dropout 

method can prevent co-adjustment among hidden units of deep neural networks by 

removing out randomly selected hidden units. In the duration of the training period, 

by removing the hidden units randomly, surviving unit weights are updated by 

backpropagation method. With the help of this process, co-adaption among hidden 

units is reduced so that each and every hidden unit becomes more robust. After the 

training period, in the testing period, fully network model weights are rescaled by 
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multiplying with (1 – p) as a mean of different network models trained with omitted 

units in the training period. Authors in [28] have proven that applying the dropout 

technique to neural networks can achieve effective generalization capabilities with 

high performance.  

However, using the dropout technique in LSTM networks is not a trivial and 

challenging task due to the LSTM network's recurrent connections. Few researchers 

have applied the dropout technique on both recurrent connections and non-recurrent 

connections, but it may lead to difficulty for LSTM networks to learn from temporal 

dependencies. Particularly long-term dependencies are very important for LSTM 

networks to update the memory cells. To solve this issue a study is presented in [29] 

about where the dropout technique works effectively, such as input-to-hidden 

connections or hidden-to-output connections. With the help of this study, we have 

concluded that applying the dropout technique on proper connection is more 

beneficial than applying on every connection. In our method a dropout technique is 

introduced for LSTM networks to solve the issues of memory loss while applying on 

recurrent connections. To achieve this, the dropout technique is applied to the 

candidate values vector as  

(15)   1 ttt CFC +  tt CdI
~

 . 

In LSTM network architecture, new candidate values ( tC ) is computed for 

memory cell by using hyperbolic tangent function. Applying the dropout technique 

only on candidate values can avoid the memory loss of recurrent connections while 

providing short and long-term dependencies. In LSTM networks, the hidden state is 

considered as an input to the subnetworks to compute all gate values and memory 

cell updates. Applying the dropout on a hidden state may lead to memory loss of 

recurrent connections. To avoid this issue, in the approach proposed, a hidden state 

is considered a key part and applied dropout only on the candidate values vector. 

3.3. Multilayer perceptron network 

In Artificial Neural Networks (ANNs in general), MultiLayer Perceptron Networks 

(MLPNs in particular) are effective computing network models to analyze a large 

amount of non-linear data sets. Compared to other machine learning algorithms, 

MLPNs have the advantages of high accuracy results. This accuracy result comes not 

only with advanced features of neural network characteristics, but also can bale the 

data to be analyzed in parallel. MLPNs are used for both classification applications 

as well as regression applications. These networks include three layers, such as input 

layer, hidden layer(s), and output layer. In every layer, all neurons will be 

communicated with acyclic links. In the proposed approach, MLPN has three hidden 

layers. 

The proposed approach has two types of network models, which give better 

results than a single prediction model. After performing the prediction process the 

network models’ results are aggregated by a new combined mechanism, which is 

based on the LSTM network.   
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4. The proposed hybrid predictive framework: HPCWMF 

The proposed hybrid approach is able to achieve highly accurate results in the 

prediction process based on the improved LSTM network and multilayer perceptron 

network. The proposed architecture is presented in Fig. 4.  

 

 

Fig. 4. A proposed hybrid predictive cloud workload management framework 

 

By improving the traditional LSTM architecture by using opposition-based 

differential evolution algorithm and dropout technique on recurrent connection 

without memory loss, the proposed approach has the ability to perform better 

prediction process. In the proposed hybrid model, two LSTM networks and two 

multilayer perceptron networks are used. In the first stage, the opposition-based 

differential evolution algorithm are used to find out the optimized neurons count in 

hidden layers and batch size of the LSTM network. In the second stage, the dropout 
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technique is applied to the candidate vector of the LSTM network rather than 

applying on the whole recurrent connection to avoid the memory loss issue in the 

LSTM network. Finally, four prediction models are evaluated by a new mechanism, 

which is based on the LSTM network to produce the final results.       

Fig. 4 represents all steps of the proposed hybrid prediction model to predict the 

request arrival rate for a cloud application. A quality training data is needed for the 

prediction model to complete the successful learning process. To achieve better 

results in the prediction process, we have improved the traditional LSTM network by 

using OBDE optimization and dropout techniques. The improved LSTM network 

identifies optimized parameters for the training process and significantly improves 

the accuracy rate of prediction, which we prove by various experiments in the next 

section. 

5. Experimental analysis 

The proposed approach has been developed and implemented in the system, which 

has Intel core I7 processor with 8 GB of RAM. The proposed work has been 

implemented in the Jupiter notebook. To evaluate the efficiency of our approach, we 

considered two real world workload traces that contain request arrival rate of servers. 

Two data sets are NASA HTTP traces [30] and Saskatchewan HTTP traces [31] used 

in our experiments. The NASA Data Set (DS1) contains two months of HTTP 

requests to the NASA Kennedy Space Center WWW server in Florida. This data set 

contains five attributes: hostname, timestamp, requests to the server, HTTP reply 

code, and bytes in the reply. These HTTP logs are considered as one line per request. 

The second data set Saskatchewan Data Set (DS2) contains seven months of HTTP 

requests to the University of Saskatchewan’s WWW server in Canada. This data set 

also has the same attributes as the NASA data set, and logs are also considered as one 

line per request. We performed various experiments with different parameters for 

each model. Different prediction intervals were considered, such as 5, 10, 15, 20, 30, 

45, and 60 min intervals for various experiments. For the experiments, 75% of the 

data is considered for training, and 25% of the data is considered for testing of the 

models.  

Derived results of the proposed approach are measured by computing the Root 

Mean Squared Error (RMSE) and R-squared (R2) of the actual workload of the server 

and the output of the proposed hybrid approach. The RMSE and R2 are presented in 

Equations (16) and (17), respectively, where iy , iy , and iŷ are average of the 

predicted value, actual and predicted workload values at time i and N is the total 

number of samples, respectively. These measured metrics has been used in many 

research fields and give the means to present the efficiency of the proposed models 

for prediction applications. The results of the proposed hybrid model (HPCWMF) are 

compared to different prediction techniques such as MLPN, RNN, LSTM, and 

LSTM-DE. The experimental results proved that the proposed approach achieves 

efficient results while minimizing the error in between actual workload and predicted 

workload,  
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Figs 5a and b represent the actual and predicted workload for two data sets 

NASA and Saskatchewan, respectively, for 15 minutes interval. The presented results 

prove the very close relation between actual and predicted workload values. The error 

rate is also very low in between two workloads, as shown in Figs 7a and b. Figs 6a 

and b show the workload values for 60 min interval. The error rate for 60 min interval 

is presented in Figs 8a and b. The calculated RMSE errors and R2 for both data sets 

using comparative models and proposed model are presented in Table 1 and Table 2, 

for different prediction intervals.     

 

  

Fig. 5. Actual RAR vs predicted RAR for 15 min interval 

 

   

Fig. 6. Actual RAR vs predicted RAR for 60 min interval 
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Fig. 7. Error rate for two test datasets (15 min interval) 

 

   

Fig. 8. Error rate for two test datasets (60 min interval) 

 

Table 1. Comparison of various prediction model’s RMSE error for two data sets 

Time 

interval  

(min) 

MLPN RNN LSTM LSTM-DE HPCWMF 

(proposed) 

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 

5 1.723 1.895 0.975 1.023 0.696 0.833 0.286 0.323 0.156 0.183 

10 1.508 1.629 0.962 1.009 0.651 0.809 0.202 0.309 0.132 0.179 

15 1.421 1.508 0.899 0.928 0.643 0.771 0.162 0.228 0.119 0.154 

20 1.019 0.925 0.875 0.924 0.575 0.778 0.155 0.204 0.085 0.113 

30 0.988 0.936 0.883 0.983 0.518 0.724 0.113 0.163 0.083 0.091 

45 0.909 0.927 0.791 0.887 0.601 0.705 0.091 0.127 0.061 0.088 

60 0.906 0.928 0.788 0.867 0.597 0.698 0.067 0.088 0.019 0.053 
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Table 2. Comparison of various prediction model’s R2 value for two data sets 

Time 

interval  

(min) 

MLPN RNN LSTM LSTM-DE HPCWMF 

(proposed) 

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 

5 0.523 0.486 0.589 0.491 0.684 0.613 0.818 0.803 0.865 0.832 

10 0.529 0.503 0.597 0.511 0.714 0.656 0.832 0.824 0.894 0.859 

15 0.566 0.533 0.623 0.523 0.758 0.696 0.874 0.846 0.918 0.881 

20 0.591 0.569 0.647 0.563 0.783 0.727 0.896 0.879 0.923 0.897 

30 0.639 0.591 0.685 0.574 0.801 0.763 0.909 0.895 0.944 0.919 

45 0.681 0.633 0.703 0.646 0.821 0.795 0.923 0.903 0.969 0.947 

60 0.702 0.661 0.718 0.693 0.834 0.811 0.931 0.917 0.988 0.979 

We have performed experiments 12 times for each model and the average of the 

results are presented in Table 1 and Table 2. These obtained results prove that 

enhancement in RMSE error and R2 for the proposed hybrid approach. They also 

prove that for workload prediction in the cloud management framework, the proposed 

hybrid approach outperforms the other four models in prediction accuracy. 

6. Conclusion 

The accurate workload prediction for cloud applications is an important task to 

perform resource scaling operations in advance while avoiding SLA violations and 

reducing infrastructure’s computational cost. This task is not trivial for a cloud 

provider and challenging due to the irregular incoming workloads to the cloud server 

from users. To enhance the cloud resource management framework’s workload 

prediction process, the authors propose a novel hybrid predictive approach to predict 

the future workload with a high accuracy rate, which is a combination of improved 

LSTM network and multilayer perceptron network. The proposed framework adopts 

an opposition-based differential evolutionary algorithm to identify the optimized 

neuron count in each hidden layer and batch size, which can influence the prediction 

ability of the LSTM network. Dropout technique is applied directly on candidate 

values in recurrent connections, which does not lead to long-term memory loss. The 

proposed approach performance is evaluated by using two real-world workload traces 

data sets such as NASA and Saskatchewan. The experimental results prove that the 

proposed hybrid approach outperforms the conventional deep learning models.   
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