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Abstract: RSA is one among the most popular public key cryptographic algorithm for 

security systems. It is explored in the results that RSA is prone to factorization 

problem, since it is sharing common modulus and public key exponent. In this paper 

the concept of fake modulus and generalized Pell’s equation is used for enhancing 

the security of RSA. Using generalized Pell’s equation it is explored that public key 

exponent depends on several parameters, hence obtaining private key parameter 

itself is a big challenge. Fake modulus concept eliminates the distribution of common 

modulus, by replacing it with a prime integer, which will reduce the problem of 

factorization. It also emphasizes the algebraic cryptanalysis methods by exploring 

Fermat’s factorization, Wiener’s attack, and Trial and division attacks.  

Keywords: Public Key Cryptography, Fermat’s Factorization, Standard Deviation, 

Pell’s Equation, Wiener’s Attack, Trial and Division. 

1. Introduction 

There are two approaches in cryptography which are based on the usage of keys; they 

are Private or Symmetric Key and Public or Asymmetric key. In Symmetric key, both 

sending end and receiving end use the same key while in asymmetric, different key 

will be used. This paper concentrates on asymmetric key, especially on RSA which 

is explained briefly in next section. 

1.1. Asymmetric Key Cryptography 

RSA is a public key system which is also referred to as Asymmetric key. In this 

algorithm, couple of related keys are used for enciphering and deciphering. The 
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public key used for enciphering algorithm and key for deciphering algorithm is 

private. Fig. 1 explains asymmetric key cryptography which uses different keys for 

enciphering and deciphering algorithm. 

 

 
Fig. 1. Asymmetric Key Cryptography process  

 
Any user wishing to send any information must initially use recipient’s public 

key information. Using this key, the message is encrypted and sent. It is hard to 

decipher the enciphered data by anyone who knows only the public key. The 

legitimate operator only, who has the private key can decipher the original data [1]. 

RSA is considered to be one of the most secure public key system. This common 

RSA eventually stands on the effort of making judgement over the known e-th root 

on to the product of two or more prime value n [2]. RSA key generation needs a 

substantial quantity of calculation to acquire prime elements, hence increase in time 

complexity for the system [3].  

RSA uses three processes for the system to operate, which are key generation, 

encipher and decipher. Key generation process deals with computing secret key 

exponent from the public key based on the Euler’s algorithm. This exponent is 

computed with a condition that, gcd(e, Ø(𝑛)) = 1, where Ø(𝑛) is Euler’s totient 

function. Since the deciphering key d and enciphering key e are different, the system 

makes it difficult to generate one key from the other. 

1.2. RSA methodology 

Let pi and qi be large prime numbers and product of these numbers form modulus n. 

Calculate Ø(𝑛) using (pi – 1)×(qi – 1). Algorithm computes public key e such that 

1<e<Ø(𝑛)) and gcd(e, Ø(𝑛)) =1. Secret key d is computed by choosing d where  

d×e ≡ 1mod Ø(𝑛). After key generation process, e and modulus n is announced 

publicly while d is kept secret. On receiving public key, sender encrypts the plaintext 

(M) by using equation C=Memodn. Encrypted text is deciphered using secret key by 

M=Cdmodn. 
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1.3. Literature survey  

Eavesdroppers always try to break any cryptographic system. This section includes 

the work proposed by different analysts in RSA cryptosystem. The conversation is 

based on the Amendment of RSA algorithm through the recent past. 

The following part primarily focuses on differentiating between the types of 

attacks, their effects and their counter measures to provide insight in order to develop 

a variant. Literature survey is classified into three sections. Section one gives survey 

of forgeries a hacker can implement on RSA. Section two summarizes different RSA 

variants. In Section three, different properties of Pell’s equation used in public key 

approaches are dealt in detail. 

1.3.1. RSA Attacks 

RSA attacks are broadly classified into Mathematical attack and Elementary attack. 

Mathematical attack includes those attacks that directly target the mathematical 

function and Elementary attack includes those attacks that exploit weakness in its 

implementation. Since RSA algorithm is prone to mathematical attack, this work 

concentrates only towards mathematical attacks of RSA by using generalized Pell’s 

equation. 

I.3.2. Mathematical Attacks on RSA: 

In this attack, attacker emphasis is on breaking the fundamental arrangement of the 

mathematical function. Main attacks under this category are low public key exponent 

attack [4, 5], Hastad broadcast attack [6, 7], Coppersmith’s Short Pad Attack [8], 

Factorization attack [9], chosen cipher text attack [10], common modulus attack [11], 

low private key exponent attack [12] and B l ö m e r  and  M a y  in [13] are presented 

as an extension work of  Wiener’s attack on small RSA secret decryption exponents. 

All these attacks are summarized as follows: 

T h u c  D. N g u y e n,  T h a n  D. N g u y e n  and L o n g  D. T r a n  [14] 

suggested in his work that using a small public-key exponent e helps in reducing the 

signature-verification time. If the public key e is small, using the value of secret key 

d, attacker can factorize n using 

(1)   𝑒 × 𝑑 = 1 mod Ø(𝑛).  

The common modulus n can be factorized after finding the value of Ø(𝑛). Hence 

all private keys can be calculated using the value of Ø(𝑛) and their public exponent 

e, and then all messages corresponding to them can be decrypted. If the sender makes 

use of a larger public key exponent, this attack can be prevented and sending 

messages can be more secure. C o p p e r s m i t h  in [15] presents how to find a small 

integer solutions to a polynomial in a single variable modulo N, and to a polynomial 

in two over the integers. Coppersmith’s theorem [16, 17] for padded messages is the 

basis of most of the powerful attacks on low public exponent RSA. In this attack, the 

receiver is constantly sent padded messages until the actual message reaches him. The 

whole attack is based on the fact that if the original padded message fails to reach the 

receiver due to interception of a hacker, the sender tries to resend the same message 

with a different pad, which is also intercepted by the hacker. A randomized padding 

scheme that is cryptographically secure can be used. B o n e h  [18] suggested 
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factorization attack, here using modulus n, the hacker can find out Ø(𝑛) from which 

attacker can find the decryption exponent 

(2)   𝑑 =  𝑒−1 mod Ø(𝑛). 

He recommended General Number Field Sieve (GNFS) deliberated as the 

strongest factoring process. The main aim is to look into attacks on RSA that enable 

decryption of messages without having to factor RSA modulus n. Factorization of n 

gives Ø(𝑛). Once e is discovered, d can be easily computed. It is relatively easy to 

factor n once the value of d is recovered. M u m t a j  and P i n g  in [19] describes a 

brief survey of past findings and detailed descriptions about specific attacks and also 

showcased that a well implemented algorithm is unbreakable and it is survived 

against a number of cryptanalytic attacks from last forty years. In [13] authors 

proposed an attack constructed on continued fractions procedure on RSA public key 

pair (n, e) with e ϵ Z× Ø(𝑛), which satisfies  

(3)   𝑒 × 𝑑−1  =  1 mod Ø(𝑛), 
for some, d<(1/3)n0.25 that produces factorization of n=p×q. In this, attacker makes 

use of sequence of continuous fraction so that decryption key is exposed when key is 

of smaller value. This attack can be reduced if exponent e is replaced by exponent e1 

where 

(4)   𝑒1  =  𝑒 +  𝑍 Ø(𝑛), 
for some large value of Z. when 𝑒1 > 𝑛1.5, Wiener attack becomes insufficient even 

if d is small. B o n e h  and D u r f e e  [20] experimentally demonstrated that private 

exponent d can be recovered using lattice attack which is extra operational than 

Wiener Attack which uses continued fraction expansion 
𝑒

𝑛
. D u r f e e  and N g u y e n  

[21] proposed RSA variants with short secret exponent extended version. They also 

proposed extended version of B o n e h  and D u r f e e  [20] attack which is 

constructed on Coppersmith’s lattice-based procedure.  

In the above sections attacks have been discussed. Since several authors have 

worked on RSA variants also, it is necessary to consider this in the survey. The next 

section gives a brief summary of variants of RSA cryptosystem.  

1.3.3. RSA variants 

In the dual RSA proposed by S u n  et al. [22], two distinct key pairs are generated. 

The RSA key pair has same encryption key and decryption key. Hence they are 

known as Dual RSA. Dual RSA reduces the key storage requirements. Dual RSA has 

application in authentication or secrecy and blind signature. RSA presented in paper 

[23] uses three prime numbers and the time required for enciphering and deciphering 

is the same as original RSA. T h a n g a v e l  et al. [24] came up with a modified RSA 

approach which uses four prime factors instead of two, by doing its complexity 

greater with respect to time increases to find prime factors. T u t e j a  and 

S h r i v a s t a v a  [25] introduce new algorithm to change the modulus n of RSA. In 

this, the original modulus n is changed to fake modulus 𝐹𝑛. The fake modulus 𝐹𝑛is 

sent as public key parameter for encryption of plain text on sender side. J a j u  and 

C h o w h a n  [26] presented improved RSA where they used three prime numbers to 

form modulus. Instead of modulus n, new parameter ε is sent publicly. If p> q then x 

is calculated as  
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(5)   𝑛 − 𝑝 < 𝜀 < 𝑛  and  gcd(𝜀, 𝑛) = 1; 

else if p<q then ε is considered as  

(6)   𝑛 − 𝑞 < 𝜀 < 𝑛  and  gcd(𝜀, 𝑛) = 1. 
Public key exponent of modified RSA is of the form (e, ε) and secret key (d, ε). 

Thus the security is increased by three levels instead of two levels in RSA making it 

difficult for attackers. S e g a r  and V i j a y a r a g a v a n  [27] developed a new 

approach where generation of keys is based on Pell’s equation, which makes use of 

the roots of Diophantine equation. They also proposed and analysed its complexity 

with RSA variants. Further, they analyzed cryptanalysis of Fermat’s attack [28, 29], 

Weiner’s continued fraction [30] and extended Euclidean method and these are 

compared along with RSA using numerical examples. A novel public key 

cryptography technique is proposed by R a g h u n a n d a n  et al. [31] which makes 

use of using Pell’s quadratic case for key generation process and these are compared 

along with RSA using numerical examples. R a g h u n a n d a n  et al. [32] also 

introduces the concept of fake modulus which is to overcome the limitations of 

Integer factorization attack. N a g  A m i t a v a  et al. in [33] proposed a general 

(k, n) secret image sharing scheme using low reconstruction complexity and 

preservation of the fault tolerance property. 
After RSA variants, it is also noted that numerous mathematical equations are 

used in the field of cryptography. This paper concentrates predominantly on the 

improvement of RSA using generalized Pell’s equation in public key cryptography 

based on fake modulus principle and its security analysis. As a survey of literature, 

in the next section enhancements made in the field of RSA using Pell’s equation in 

public key cryptography is discussed. 

1.3.4. Pell’s Equation 

Pell’s Equation has been used in the area of number theory for numerous applications 

from ancient times since it comes under cyclic group and has multiple solutions. 

Based on these features, many cryptography algorithms have been designed. 

B a r b e a u  [34] suggests the usage of Pell’s equation for higher order. C h e n, 

C h a n g  and Y a n g  [35] introduced fast RSA which is established on Pell’s 

equation. Using this, he showed that encryption speed is 1.5 times faster and 

decryption is two times faster than standard RSA. P a d h y e  [36] projected a new 

operation using solution space of Pell’s Equation and proposed three RSA variants. 

R a o  et al. [37]  proposed an identity based encryption algorithm which makes use 

of Pell’s equation. B u r t o n  [38] says clearly that Pell’s equation can be used in 

addition to RSA to foil some of the above attacks. Raghunandan et al. [39] proposed 

dual RSA approach using Pell’s equation to hide public key component, and in paper 

[40] they used Pell’s cubic equation for securing media information. Hence in this 

work, it has been shown that in addition to RSA, generalized Pell’s equation gives an 

added advantage.  

In the next section, the mathematical background for the work is dealt in detail. 

Section 3 deals with methodology of the proposed system. In Section 4, all the 

experimental details are elaborated. Section 5 describes analysis of the results. The 

paper concludes in Section 6. 
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2. Mathematical preliminaries 

A group G is denoted as {G, *}, where * is binary operation on set of elements on G. 

The binary operations are performed on ordered pairs (m, n) of the set to get an 

element using (m*n) in G. To form group m set, G must satisfy the following axioms: 

 Closure: If m, n  G, then (m*n) is also in G. 

 Associative: (m*n) * y = m*(n*y) ∀ m, n, y  G. 

 Identity element: Any e  G so that m*e = e*m = m ∀m in G. 

 Inverse element: For each m in G, then an inverse element m' in G, i.e.,  

m*m' = m'*m = e. 

Number of components in a group forms order of the group and if the group 

contains finite components, is Finite Group. If a group fulfils the above axioms with 

a following additional axioms, we can refer to it as Abelian groups.  

 Commutative: For all m, n ϵ G, m*n = n*m.  

If a group is generated by a single element, then we refer to it as cyclic group. 

Group G is having an element m, called the generator of the group, such that all the 

elements of the group are powers of the element m, 

(7)   𝐺 =  {𝑚𝑛: 𝑛 𝜖ℤ}, 
where m is the generator of G. 

Cyclic groups are said to be isomorphic if the groups have same order. Also, if 

order of the group is a prime number, then it is cyclic. Cyclic groups are the simplest 

abelian groups when they have an order = 1 or the order is prime.  

From Fermat’s Little Theorem, if p is a prime number and a is an integer, then 

(8)   𝑎𝑝mod 𝑝 =  𝑎. 
Furthermore, if gcd(a, p) = 1 then  

(9)   𝑎𝑝−1mod 𝑝 =  1. 
Let M be the original data to be enciphered using Equation (9) then, enciphering 

is done by raising plaintext to the e-th power modulo p to obtain cipher text C, then 

to obtain M again, decipher is done by raising the cipher text to the d-th power 

modulo p 

(10)   𝐶 ≡  𝐸(𝑀) ≡  𝑀𝑒(mod 𝑝), 
(11)   𝑀 ≡  𝐷(𝐶) ≡  𝐶𝑑(mod 𝑝). 

Original message obtained by deciphering an enciphered message (D(E(M)) = M), 

(12)   (𝑀𝑒mod 𝑝)𝑑   mod 𝑝 = 𝑀, 
(13)   𝑀𝑒.𝑑mod 𝑝 = 𝑀. 

Further we extended using Pell’s equation for more rigidity.  

Let x2 – Ry2 = 1, linear Diophantine equation, where R is a positive integer, for 

any x, y belongs to integer set Z.   

Proposition 1. If the Pell’s equation x2 – Ry2 = 1 has nontrivial solutions, then 

R is a positive integer, which is not a perfect square. 

P r o o f: 

Case I (R = −1). The equation x2 + y2 = 1 has four trivial solutions: (±1, 0),  

(0, ±1).  

Case II (R < −1). Then x ≠ 0 =⇒ x2 – Ry2 ≥ 2, so (1) has only the solutions  

(±1, 0).  
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Case III (R = N2). Then x2 – Ry2 = (x + Ny)(x −Ny) = 1, and this imposes either: 

x + Ny = x −Ny = 1 in which case x = 1, y = 0; or x + Ny= x −Ny= −1, 1 in which 

case x = −1, y= 0 and there are only trivial solutions.  

Since the proposed scheme uses Case I, we are not using Case II and Case III in 

our scheme 

Finding solutions of the Pell’s equation using the next  

Theorem. Let R be a positive, non-square integer. 

a) There exists a positive integral result (x, y) to x2 – Ry2 = 1, 

b) There exists a unique positive integral result (x1, y1) with (x1, y1) R  is 

minimal. Put u=(x1+ y1) R . Then every positive integral solution is of the form 

(
𝑢𝑛+𝑢′𝑛

2
,

𝑢𝑛−𝑢′𝑛

2√𝑅
) = (

𝑢𝑛

2
,

𝑢𝑛

2√𝑅
) for a unique n ∈ Z+, 

c) Every result to the Pell’s equation is of the form ± (xn, yn) for n ∈ Z. 

Let x+y R  be the selected number, the multiplicative inverse of that is  

x – y R   subsequently, 

(14)   𝑥 + 𝑦√𝑅, 𝑥 − 𝑦√𝑅 (𝑥 + 𝑦√𝑅) =  𝑥2 − 𝑅𝑦2  =  1, 
here (x, y) is a solution of x2 – Ry2 = 1. Thus the solutions (xi, yi) form a group, and 

the positive number x+y R   is a subgroup. As given in axioms given in (b) the  

𝑥 + 𝑦√𝑅  is a unique solution of (xi, yi). Since it is a unique solution, it is shown that 

solutions of x2 – Ry2 = 1, which is infinite cyclic group. 

Let (x1, y1) be a solution of x2 – Ry2 = 1. Then we can generate another solution 

given in the Equation (14) 

(15)   (𝑥1
2 + 𝑅𝑦1

2)2 − 𝑅(2𝑥1𝑦1√𝑅)
2

= 1. 

Let (x1, y1)  be the ultimate result of x2 – Ry2 = 1. Then pair (xn, yn) is defined by 

(16)   (𝑥𝑛, + 𝑦𝑛√𝑅)= (𝑥1+𝑦1√𝑅)𝑛, 

(𝑥𝑛, + 𝑦𝑛√𝑅) = (𝑥1+𝑦1√𝑅)𝑛, 

which has also a positive solution, n = 1, 2, 3… 

Suppose R is a positive integer and x and y are integers satisfying the Cubic 

power of Pell’s equation x3 – Ry3 = 1. Security features of RSA by cubic power of 

Pell’s equation is discussed in [41]. This Pell’s equation is generalization of m-th 

order, which is used in this work and gives one more level of security abstraction 

using a novel concept in public key cryptographic technique. B a r b e a u  [34] proved 

that there will be set of roots in higher order of Pell’s equation. 

In our work, the integer roots of m-th order of Pell’s equation is taken. Pell’s 

equation is 

(17)   𝑥𝑚 − 𝑅𝑦𝑚  =  1, 
where R and m belongs to the integer set.  

Consider a solution set 𝐶𝑝, set of all solutions of the equation  

(18)   𝑥𝑚 − 𝑅𝑦𝑚  =  1(mod 𝑛). 
Let n be the common modulus, calculated by multiplying prime numbers p, q, r 

and s, and totient function Ø(𝑛) calculated as 

(19)   Ø(𝑛) =  (𝑝 −  1) × (𝑞 −  1) ×  (𝑟 − 1) ×  (𝑠 − 1).   
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Private key component d can be computed as per RSA. Select an integer m and 

generate R and (x, y) pair from the Equation (17). 

Let us consider m-th order for equation xm – Rym = 1. This equation can be 

extended based on Euler’s totient function of n to get the value β, which is  

(20)   𝛽 =  [𝑦 +  Ø(𝑛)]𝑚  − 𝑅 [𝑥 +  𝑒]𝑚. 

Based on the Binomial expansion, this equation can be simplified as 

(21)   𝛽 + 𝑚𝐶1
𝑅𝑥𝑚−1𝑒 − 𝑚𝐶2

𝑅𝑥𝑚−2𝑒2 + ⋯ + 𝑅𝑒𝑚 ≡  1 mod Ø(𝑛). 

The Equivalence (21) can also be written as 

(22)   𝛽 = ∑
𝑚!

(𝑚−𝑘)!𝑘!
𝑥𝑚−𝑘Ø(𝑛)𝑘 − 𝑅 ∑

𝑚!

(𝑚−𝑘)!𝑘!
𝑦𝑚−𝑘𝑒𝑘𝑚

𝑘=0
𝑚
𝑘=0 . 

Using 𝛽  the computation of public key S as  

(23)   S=[𝛽 + 𝑅[𝑚𝐶1
𝑦𝑚−1𝑒 +𝑚𝐶2

𝑦𝑚−2𝑒2+…+𝑚𝐶𝑚
𝑒𝑚]] ∗ 𝑑𝑚 ∗ mod Ø(𝑛). 

Calculate fake modulus z to replace n using 

(24)   𝑧 =
((𝑒×𝑑)−1+𝑘)

𝑘
, 

where k > 1 and z should be prime number. 

Computation of private key exponent E using 

(25)   𝐸 = 𝑒𝑚 mod Ø(𝑛). 
The above mathematical technique is used in a public key cryptographic 

system and the methodology for it is explained in the next section. 

3. Proposed methodology 

 
Fig. 2. Block-diagram of Generalized Pell’s equation algorithm for both key generation and encryption  

The above-generalized equation can be easily adapted to the extension of RSA. 

This section deals with the methodology of using Generalized Pell’s equation in 

addition to RSA, which has three parts Key generation, Encryption and Decryption. 
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Block-diagram of Generalized Pell’s equation algorithm for both key generation, 

encryption and decryption is explained using Fig 2. 

1. Key generation. Here also, as in the case of RSA, instead of two prime 

numbers, choose four large prime numbers 𝑝𝑖 , 𝑞𝑖, 𝑟𝑖  and  𝑠𝑖.  

Let 𝑛 =  𝑝𝑖 × 𝑞𝑖 × 𝑟𝑖 × 𝑠𝑖  and Ø(𝑛)= (𝑝𝑖 − 1) × (𝑞𝑖 − 1) × (𝑟𝑖 − 1) × (𝑠𝑖 − 1), 

evaluated as per Equation (19). Select an integer m and generate R and (x, y) pair 

from the Equation (17). Calculate β using Equations (20), (21) or (22).  Calculate 

Public Key Exponent S using Equation (23). Calculate fake modulus z to replace n 

using Equation (24). Private Key exponent E can be calculated using Equation (25). 

2. Encryption. Plain texts are encrypted using Public key exponent S using the 

equation 

(26)   𝐶𝑖 = 𝑀𝑆 mod 𝑧. 

3. Decryption. Using Private Key receiver obtaining plaintext back using the 

equation 

(27)   𝑀 = 𝐶𝑖
𝐸  mod 𝑧. 

The above said work is explained by the following example. 

Example. In Equation (17), Let m be the exponent integer and R will be  

an integer, obtaining x, y pairs which is required for generation of encryption  

and decryption keys. Let an integer m=5 and by keeping R=31, obtained (x, y) pair as 

(2, 1) from the Equation (17). Let four prime numbers be p = 61, q = 89, r = 29 and  

s = 31 computed modulus n = 4880671 and using Equation (19) obtained  

Ø(𝑛) = 4435200. Select e = 13 where gcd(13, 4435200) = 1. Using e obtained  

d = 13–1mod4435200 = 1364677. By Equations (20) and (22) obtained,  

β = 1716196540458673334460904581343488. Substituting in Equation (23) 

obtained public key exponent S = 3130357. Fake modulus z = 8870401 can be 

estimated using Equation (24). 

Private Key exponent is computed by applying Equation (25) as  

E = 135mod 4435200 = 371293. During encryption, sender selects plain text M = “c”, 

ASCII value of “c” = 99. Sender generates Cipher text using Equation (26) as, 

Ci=993130357mod 8870401= 5453252. At the receiving end receiver can obtain original 

message M using Equation (27) as, M = (5453252)371293mod 8870401 = 99 = “c”. 

4. Results and analysis 

This section is organized as follows. Comparisons of proposed scheme with standard 

RSA are discussed in Section 1. Computational intricacy of the proposed algorithm 

is analysed and compared with standard RSA in Section 2. Complexity to break 

proposed scheme using different attacks are summarized and compared against RSA 

in Section 3. Experimental results conducted using proposed algorithm is 

summarized in Section 4.  

4.1. Comparison with RSA  

The paper compares the proposed algorithm with standard RSA for security in terms 

of mathematical attacks. Standard RSA faces the problem of factorization, because 

intruder can forge the secret key d by using public key exponent e and n, here 
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common modulus n is dependent on two factors which can be factored using minimal 

computation time. But in case of proposed scheme public key S depends on several 

parameter (𝑥, 𝑦, 𝑅, 𝑚, 𝑒, 𝛽), all the parameters included in S are depend on each other 

so obtaining all the parameter itself is a big challenge, since z cannot be factorised.  

4.2. Complexity analysis 

The time complexity is the computational factor that describes the volume of time it 

takes to run an algorithm. Table 1 summarizes number of elementary operations 

performed in each step of RSA  compared against the proposed scheme using Big-O 

notation. 
 

Table 1. Complexity analysis comparison RSA/ Generalized Pell’s equation 

Parameters Normal RSA 
Generalized Pell’s equation 

M=2 M=3 M=5 

Ø(𝑛) O(n2) O(n3) O(n3) O(n3) 

E O(log n) O(log n) 𝑂(log 𝑛) 𝑂(log 𝑛) 

D O(n2) O(n2) O(n2) O(n2) 

Encryption O((log n)2) O((log n)2) O((log n)2) O((log n)2) 

Decryption O((log n)2) O((log n)2) O((log n)2) O((log n)2) 
 

This indicates that there is no growth in time for enciphering and deciphering 

processes. The time used for the generation of key will increase exponentially as per 

the value of m, however there is no change in the timing during generation of key in 

case of e and d. Time complexity in case of evaluation of Ø(𝑛) is O(n3). 

4.3. Mathematical attacks 

Mathematical attacks emphasise on forging the principal arrangement of the 

mathematical function. Since RSA is prone to mathematical attack, major attacks 

under this category are Fermat’s factorization attack, Trial and Division attack and 

Wiener’s attack which is explained in the following subsections with explanations 

for the same.  

4.3.1. Fermat’s attack 

Fermat’s factorization method uses the fact that the difference between two squares 

expresses any number. Fermat’s factorization method factors n if the gap between 

𝑝𝑖 and 𝑞𝑖  is below the square root of 𝑝𝑖. In standard RSA algorithm, Fermat’s 

factoring method which heuristically splits a composite number 𝑛 in 𝑂(𝑛
1

4
+𝑒) steps. 

In this n is represented as the difference of two rational squares for an integer 

approximation to √
𝑞𝑖

𝑝𝑖 
 which provides an algorithm with complexity 𝑂(𝑛

1

2
+𝑒). If a 

prime 𝑚 divides a square, then 𝑚2 will also divide that square to achieve a heuristic 

speed-up to O(𝑛
1

4
+𝑒

) steps [42]. 

In RSA, the factorization time purely depends on difference between the prime 

numbers, and does not depend on the size of n. Factorization time increases with the 

increase of difference between the prime factors. 
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In proposed algorithm, we replace 𝑛 by fake modulus 𝑧. Since 𝑧 is a prime 

number, its factors are always 𝑧 and 1. In order to get 𝑋 + 𝑘 = 𝑧 and 𝑋 − 𝑘 = 1 

values of 𝑋 and 𝑘 will be  
𝑛

2
+ 1 and 

𝑛

2
, respectively. Thus, the value of k starts with 

√𝑛 and ends with 
𝑛

2
.The number of loops or steps it takes to terminate the execution 

is 
𝑛

2
− √𝑛. Therefore, the complexity of Fermat’s algorithm when n is substituted by 

a prime number z, is 𝑂(𝑛 ). 

Let E1 be the event to factorise the prime factors of z in case of proposed system, 

n in case of RSA. It is evident that in case of RSA factorization of n takes O(n), 

however in the proposed system, factorizing z is impossible since it is a prime 

number, therefore 𝐸1 is infinity. Let E2 be the factorization of Ø(𝑛) in case of RSA 

and Ø(𝑧) in case of proposed system. Ø(𝑛) is defined as (𝑝𝑖 − 1)×(𝑞𝑖 − 1), which 

is less than z – 1 where Ø(𝑧) is defined as z – 1, since z is a prime number which 

indicates to factor the proposed Euler’s totient function is harder than RSA. 

4.3.2. Trail and Division 

In RSA, the Trial division method varies from 1 to √𝑛 − 1, since n can be divided. 

The proposed method uses z in place of n where z is a prime number, the division of 

prime number is not possible. Hence,trial division method fails. 

4.3.3. Wieners Attack 

Polynomial-time attack on a RSA cryptosystem is considered as Wiener’s attack 

which uses a small secret deciphering exponent d, which works if 𝑑 < 𝑛1/4, where 

the modulus of the cryptosystem is 𝑛 = 𝑝𝑞, to exploit the loophole of RSA continued 

fraction method is used.  

Let n=𝑝𝑖×𝑞𝑖 with 𝑞𝑖<𝑝𝑖<2𝑞𝑖 and d < (n0.25)/3) by sharing public key component 

(n, e) with  ed≡1mod(Ø(𝑛)), which leads to recovering d very easily. In that case, 

𝑑 is convergent and the denominator 
𝑝𝑖−𝑚

𝑞𝑖−𝑚
 of the continued fraction expansion of 

𝑒

𝑛
 

and therefore computation of 𝑑 from the public key(𝑛, 𝑒) is effective. When 𝑑 is few 

bits longer than 𝑛0.25 numerous variants of Wiener’s attack are proposed which 

breaks the RSA cryptosystem which contains the run-time complexity 𝑂(𝐷2), where 

𝑑 = 𝐷 ∗ ( 𝑛0.25), 𝐷 =
𝑑

𝑛0.25. 

The complexity is 𝑂(𝐷2)and can also be written as 𝑂 (
𝑑2

𝑛0.125).  

In Proposed model, n is replaced by z and it is the fake modulus, since n is not 

related to z, and z is also a prime number, it is imposible to find the factors of z, hence 

Wieners Attack can be foiled.   

4.4. Experimental results 

Experiment is carried out and tested by using Lenna monographic image by taking 

integer exponent key m = 5 pair of keys are generated. Public key S = 3,130,357 and 

fake modulus z = 8,870,401 encryption is done and obtaining plain text back by using 

private keys d = 1,364,677 and fake modulus z = 8,870,401. Plain image and cipher 
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image is exposed in Fig 3a and b. It is evident by the visual observation that no trace 

of plain image is available in the cipher image. 
 

          
(a)                          (b) 

Fig. 3. Plain image (a); Encrypted image (b) 
 

The number of occurrences of pixels of plain image is plotted against all the 

values of the plain image pixel value. This is shown in Fig. 4a. After encryption for 

the cipher image, the same is plotted and histogram is shown in Fig. 4b. In cipher 

image histogram, it is observed that occurrences of all the pixels are equiprobable 

indicating resistance to immunity. 
 

 
(a) 

 
(b) 

Fig. 4. The number of occurrences of pixels of plain image (a); The number of occurrences of pixels of 

cipher image (b) 

 

Similarly, the standard deviation of the number of occurrence of the plain image 

and cipher image for modulus n and fake modulus z is evaluated and plotted in  

Fig. 5. 
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Fig. 5. Standard Deviation of plain image and cipher image for modulus n and fake modulus z 

This indicates each pixel value has equal amount of distribution with flat 

spreading which makes the algorithm protected from intruders by different attacks. 

4.5. Avalanche effect 

The avalanche effect is a necessary property for all purposes of cryptographic 

algorithms. It causes dynamically increasing significant changes as the information 

spreads in the structure of the algorithm. Consequently, a piece or bit of the original 

image, obtaining huge rate of change in the encrypted image [43]. It is explained 

using the equation 

(28)   Avalache Effect(AE) = (
∑ bit change𝑖

∑ bit total𝑖
) × 100. 

 

 
Fig. 6. Avalanche effect of proposed scheme 

 

Fig. 6 shows a small change in the original image which leads to a tremendous 

change in the cipher text, which in turn makes it hard to decrypt the image and obtain 

the original image back. 

5. Conclusion 

Protection of information plays a vital role in day to day life. In this paper, new 

variant of RSA using generalized Pell’s equation is experimented and explained. It is 

explored in the results that RSA is prone to factorization problem, hence intruder can 

break the private key d using minimal computation time. But in case of proposed 

scheme, public key S depends on several parameter (𝑥, 𝑦, 𝑅, 𝑚, 𝑒, 𝛽), all the 
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parameters included in S are dependent on each other parameter, hence obtaining all 

the parameters itself is a big challenge.Computational complexity of the anticipated 

scheme is compared and analysed with RSA and indicates that there is no increase in 

time for encipher and deciphering process. Proposed model proved to be better 

compared to RSA as it uses Fake modulus z, which makes the system immune against 

mathematical attacks. Experimental results conducted using Standard Deviations, 

Histogram analysis which indicates occurrences of each pixel value have equal 

occurrence with flat distribution making the algorithm immune from attacks such as 

Fermat’s factorization, Trial and division and Wiener’s attack. Finally, this article 

shows that proposed cryptosystem is indeed as intractable as the factorization 

problem. 
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