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Abstract: This work presents a novel approach to the design of a decision-making 

system for the cluster-based optimization of an evacuation process using a Parallel 

bi-objective Real-Coded Genetic Algorithm (P-RCGA). The algorithm is based on 

the dynamic interaction of distributed processes with individual characteristics that 

exchange the best potential decisions among themselves through a global population. 

Such an approach allows the HyperVolume performance metric (HV metric) as 

reflected in the quality of the subset of the Pareto optimal solutions to be improved. 

The results of P-RCGA were compared with other well-known multi-objective genetic 

algorithms (e.g.,  -MOEA, NSGA-II, SPEA2). Moreover, P-RCGA was aggregated 

with the developed simulation of the behavior of human agent-rescuers in emergency 

through the objective functions to optimize the main parameters of the evacuation 

process.  

Keywords: Cluster-based multi-objective optimization, human crowd behavior, real-

coded genetic algorithms, multi-agent systems, fuzzy clustering. 

1. Introduction 

Determining the best outcome of an evacuation in emergency is a topical issue. A 

great deal of research has been conducted in the field of modelling human crowd 

behavior in emergencies and the simulation of evacuation processes (e.g., [4, 7, 14, 

21-23, 28]). There are medical facts that prove that a rapid evacuation is one of the 

most important factors for the survival rate of the patient population in emergency 

[15]. Therefore, the decision-making system of the effective evacuation process 

should be based on looking for the best trade-offs, maximizing the number of 

evacuated agents and minimizing the time for evacuation. 

Studies by Dirk Helbing relating to the modelling the human crowd behavior 

are pioneering works. These have aimed at using simulation methods for identifying 

the best evacuation plans by taking panic into account. In one of his well-known 

works published in Nature [22], for the first time, it was possible to reproduce a 
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number of crowd-specific phenomena, such as traffic jams, the involvement of new 

people in panic, and other effects based only on describing the interacting agents and 

their individual behavior at the molecular level. Molecular dynamics methods are 

used in Helbing’s models in which psychological and social factors are considered as 

interaction potentials between human molecules. This approach, despite its many 

advantages, is not applicable practically for the optimization of real evacuation 

processes due to the high computational complexity associated with the increasing 

dimensionality of such a system. 

Such difficulties can be overcome within the phenomenological approach, 

which is a simpler analogue description of the states of agents and their interactions. 

The approach was implemented in a study by A k o p o v  and B e k l a r y a n  [4]. In 

the model, the states of agents and their characteristics, the rules of the agent 

interaction and the decision-making of agents are defined a priori. At the same time, 

the spatial dynamics of agents is described by a system of differential equations with 

variable structure that takes into account various scenarios for agents that are 

interacting with each other and with simple objects, such as column-obstacles. One 

of the model characteristics is the suggested definition of the personal space of an 

agent, which forms the phenomenon of the ‘turbulence effect’ of the crowd and panic. 

The advantage of the approach is the reduction in the computational complexity 

needed to determine the coordinates of moving agents whilst maintaining the 

accuracy of the behavior model of agents. In the model, a class of intellectual agents 

called agent-rescuers are responsible for the evacuation procedure based on 

computing   crowd clusters formed because of panic and the attraction of agents to 

each other. 

The computation procedure of crowd clusters is based on the suggested 

modified Fuzzy Clustering Algorithm (FCA) [8]. In this work, for the first time fuzzy 

clustering is used for the determination of  crowd clusters in emergency taking into 

account natural restrictions for the evacuation (such as wall, obstacles, etc.) which 

can isolate individuals from their clusters. For the first time FCA was proposed by 

B e z d e k  [11, 12].  

For the implementation of both ‒ the model of evacuated agents and the model 

of agent-rescuer behavior, Agent-Based Modelling (ABM) (e.g., [2-4]) together with 

suggested bi-objective genetic algorithm are employed.   

Developing effective Genetic Algorithms (GAs) that identify Pareto solutions 

in multi-objective optimization problems is a current theme of research in 

evolutionary computations with numerous applications in practice. As known, in 

most well-known Multi-Objective Evolutionary Algorithms (MOEAs), e.g., SPEA 

[32], SPEA2 [13], NSGA-II [16], and -MOEA [18], binary coding of chromosomes 

is used, as well as classic heuristic operators of binary crossover and mutation. 

However, the binary representation of chromosomes causes a significant loss in time-

efficiency when searching in continuous spaces with large dimensionality when the 

demand for the precision of solutions is greatly required.  The main problem is the 

dependency of the chromosome length on the required precision (the number of 

mantissa bits) in binary coding. At the same time, reducing the precision of solutions 

causes a reduction in the value of the HyperVolume metric (HV metric), which 
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should be maximized in multi-objective minimization problems. Therefore, it has 

been suggested to use real-coded heuristic operators in multi-objective genetic 

algorithms.  

The first RCGA (Real-Coded Genetic Algorithm) was developed by Herrera 

[24, 25] and is used for solving single objective optimization problems. Both binary 

genetic algorithms and real-coded genetic algorithms have many applications in 

technical systems and decision-making systems (e.g., [5, 10, 26, 29-31]). Real-coded 

genetic algorithms are characterized by the best precision of solutions looking in a 

continuous space. 

An important direction for the application of RCGAs has been their use as a core 

in MOEAs to improve the precision of solutions and metrics such as hypervolume, 

rate of convergence, time processing and other characteristics.  

Parallel RCGAs can be applied for solving large-scale black-box (i.e., 

derivative-free) optimization problems when the objective functions are computed as 

a result of simulation modelling. Examples of such approach are MAGAMO [6], 

MA-RCGA [1], and F-RCGA [9] where using interacting agent-processes allows for 

a significant improvement in the rate of convergence.   

This work aims to design a parallel real-coded genetic algorithm for the cluster-

based optimization of an evacuation process. The bi-objective box-constrained 

optimization problem for a model of human crowd behavior in emergency is 

formulated and solved using the suggested Parallel RCGA (P-RCGA). The first 

objective is the total number of evacuated agents that should be maximized and the 

second objective is the evacuation time that should be minimized. 

2. Model of an evacuation process 

Further, the abstract description of the suggested cluster-based model of agent-

rescuer behavior and the solving of the bi-objective optimization problem will be 

considered. This model is based on phenomenological concepts of human crowd 

behavior in emergencies described in our previous studies [4, 8]. Here: 

 T  is the set of time moments (in minutes), and T is the total number of time 

moments, 0t T , 
T

t T  are the initial and finite time moments, jt T , 

0,  ...,   j T are all time moments; 

 ( )jI t  is the set of indexes of usual agents that should be evacuated at moment 

jt ( )jt T , and ( )jI t  is the total number of agents to be evacuated; 

 ( )jK t  is the set of indexes of agent-rescuers that evacuate usual agents in 

emergency at moment jt  ( )jt T , and ( )jK t  is the total number of agent-rescuers; 

 ( )jC t  is the set of indexes of crowd clusters at moment jt  ( )jt T  that are 

computed with the help of the previously suggested fuzzy clustering algorithm [8], 

and ( )jC t  is the total number of crowd clusters; 
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 ( )jO t  is the set of indexes of obstacles (e.g., column-obstacles, rectangle-

obstacles, etc.) that can be located on the path of an agent at moment jt  ( )jt T , and 

( )jO t  is the total number of obstacles; 

 { ( ),  ( )}o j o jt tX Y  is the set of point coordinates belonging to the o-th obstacle 

( ( ))jo O t  at moment jt ( )jt T ; 

 ( )jE t  is the set of indexes of emergency exits at moment jt  ( )jt T , and 

( )jE t  is the total number of emergency exits; 

 { ( ),  ( ) }i j i jx t y t , { ( ),  ( ) }k j k jx t y t  are the coordinates of locations of usual 

agents ( ( ))ji I t  and agent-rescuers ( ( ))jk K t at time jt  ( )jt T ,  respectively; 

 ˆ ˆ{ ( ),  ( ) }ic j ic jx t y t  are the coordinates of the c-th crowd cluster ( ( ))jс С t  

that is nearest to the i-th usual agent ( ( ))ji I t  at moment jt ( )jt T ; 

 { ( ),  ( ) }kc j kc jx t y t  are the coordinates of the c-th crowd cluster ( ( ))jс С t  

that can be assigned to the k-th agent-rescuer ( ( ))jk K t  at moment jt ( )jt T ; 

 { ( ),  ( ) } { ,  }ke j ke j e ex t y t g h  are the coordinates of the center of the e-th 

emergency exit ( ( ))je E t  that is the nearest to the k-th agent-rescuer ( ( ))jk K t  at 

moment jt ( )jt T , { ,  }e eg h is the set of coordinates of all emergency exits;  

 { ( ),  ( )}i j k js t s t  are the known speeds of the i-th usual agent ( ( ))ji I t  and 

the k-th agent-rescuer ( ( ))jk K t at time jt  ( )jt T ; 

 1 1{ ,  }a b , 1 2{ ,  }a b , 2 1{ ,  }a b , 2 2{ ,  }a b  are the coordinates of the rectangle 

tops in the two-dimensional space defined as the emergency area (Fig. 1). 

 
Fig. 1. Emergency area 

 

 ( )i jt is the Euclidean distance between the i-th usual agent ( ( ))ji I t  and 

the explosion epicenter having the internal radius r  and the external radius R  at 

moment jt ( )jt T  (Fig. 2); 
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Fig. 2. An agent bypassing the nearest obstacle 

 

 ( ) [0,  1]i jp t   is the known probability of destroying the i-th usual agent 

( ( ))ji I t  due to the increase in the concentration of harmful substances in the air at 

moment jt  ( )jt T ;  

 ( ) [0,  1]i ju t   is a random number generated by the random-number 

generator;  

 st ( ) {0,  1, 2, 3}i jt  is the current state of the i-th usual agent ( ( ))ji I t  at 

moment jt  ( )jt T , st ( ) 0i jt   if  the i-th usual agent is a normal state, i.e., it is not 

injured or destroyed, st ( ) 1i jt   if the i-th agent is injured and has a minimum speed, 

st ( ) 2i jt   if the i-th usual agent is destroyed, st ( ) 3i jt   if the i-th usual agent is 

evacuated (i.e., its coordinates are outside the emergency area); the transitions 

between these states depend on the location of the i-th usual agent in an emergency; 

 st ( ) {0,  1, 2}k jt  is the current state of the k-th agent-rescuer ( ( ))jk K t at 

moment jt  ( )jt T , st ( ) 0k jt   if the agent-rescuer is moving towards the center of 

a crowd cluster to evacuate agents, st ( ) 1k jt   if the agent-rescuer is waiting for both 

uninjured agents and injured agents at the centre of a crowd cluster to collect them to 

start the evacuation, st ( ) 2k jt   if the agent-rescuer is moving towards the nearest 

emergency exit to evacuate the collected agents;             

 ( )k jt  is the waiting time of the k-th agent-rescuer in the center of the crowd 

cluster while agents are collected to be evacuated; 

 { ( ),  ( )}ic j kc jt t   are the angles of the motion directions of the i-th usual 

agent ( ( ))ji I t  towards the c-th crowd cluster ( ( ))jc C t caused by the known  

“effect of crowd” [4], as well as the motion of the k-th agent-rescuer ( ( ))jk K t  

towards the c-th crowd cluster ( ( ))jc C t to evacuate agents, respectively; 

 { ( ),  ( )}ik j ke jt t   are the angles of the motion directions of the i-th usual 

agent ( ( ))ji I t  towards the k-th agent-rescuer, as well as the motion of the k-th 

agent-rescuer ( ( ))jk K t  towards the e-th emergency exit ( ( ))je E t , respectively; 
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 { ( ),  ( )}ip j kp jt t   are the angles of shifting the motion directions  of the i-th 

agent ( ( ))ji I t  and the k-th agent-rescuer ( ( ))jk K t  regarding their previous 

directions caused by the nearest neighbor p-th agent ( ( ))jp I t  appearing on their 

paths; 

 { ( ),  ( )}io j ko jt t  are the angles of the bypassing directions of the i-th usual 

agent ( ( ))ji I t  and the k-th agent-rescuer ( ( ))jk K t  around the nearest o-th 

obstacle ( ( ))jo O t ; 

 { ( ),  ( )}q q

i j i jx t y t , { ( ),  ( )}q q

k j k jx t y t are the coordinates of the i-th usual agent 

( ( ))ji I t and the k-th agent-rescuer ( ( ))jk K t  moving along the mental path 

towards their targets at moment jt ( )jt T , and 1,  2 ...,  q Q  is the index of internal 

iterations, Q  is the total number of iterations, e.g., 

1( ) ( ) ( )cos ( ),q q

i j i j i j ic jx t x t s t t   

1( ) ( ) ( )sin ( );q q

i j i j i j ic jy t y t s t t   

 ( )k jR t  is the radius of the visibility zone of the k-th agent-rescuer 

( ( ))jk K t  that defines the ability of usual agents to find it in an emergency; 

 { ( ),  ( )}ip j kp jd t d t are the distances between the i-th usual agent ( ( ))ji I t  or 

the k-th agent-rescuer ( ( ))jk K t  and the nearest neighbor p-th agent ( ( ))jp I t ; 

 ( )ik jd t is the distance between the i-th usual agent ( ( ))ji I t  and the k-th 

agent-rescuer ( ( ))jk K t ; 

 { ( ),  ( )}i j k jr t r t  are the radiuses of personal spaces of the i-th usual agent 

( ( ))ji I t  and the k-th agent-rescuer ( ( ))jk K t , depending on the density of agents 

around an appropriate agent at moment jt  ( )jt T : 

(1)   

1

1 2

2 3

3

(0)  if ( ) ,

(0) / 2  if ( ) ,
( )

(0) / 4  if ( ) ,

2 (0)  if ( ),

i i j

i i j

i j

i i j

i i j

r t

r t
r t

r t

r t

 

  

  

 




 
 

 
 

  

where 1 , 2 , 3  are fixed threshold densities of agents, (0)ir is the initial radius of 

an agent, and ( )i jt  is the density of agents around the i-th usual agent ( ( ))ji I t , 

(2)   

( )

1

( ) ( ),
jI t

i j i j

i

t m t


      
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where ˆ ( )ip jt  is the Euclidean distance between the i-th usual agent ( ( )ji I t  and 

the neighboring p-th agent ( ( ))jp I t  that is located inside the circle with a fixed 

radius of 
iR  with the coordinates of the center at { ( ),  ( )}.i j i jx t y t  

The spatial dynamics of i-ths usual agents ( ( ))ji I t  is described by the 

following system of finite difference equations with the variable structure at moment 

jt ( )jt T : 

(3) 

 

 

1 1 1

1 1 1 1

1 1 1

1 1 1 1

( ) ( )cos ( ) if I is true,

( ) ( )cos ( ) ( )  if II is true,

( ) ( )cos ( ) if III is true,

( ) ( ) ( )cos ( ) ( )  if IV is tr

i j i j ic j

i j i j ic j ip j

i j i j ik j

i j i j i j ik j ip j

x t s t t

x t s t t t

x t s t t

x t x t s t t t



 



 

  

   

  

   



 



  

 
1 1 1

1 1 1 1

ue,

( ) ( )cos ( ) if V is true,

( ) ( )cos ( ) ( )  if VI is true,

0 if VII is true, 

i j i j io j

i j i j io j ip j

x t s t t

x t s t t t



 

  

   













 



         

(4) 

 

 

1 1 1

1 1 1 1

1 1 1

1 1 1 1

( ) ( )sin ( )  if I is true,

( ) ( )sin ( ) ( )  if II is true,

( ) ( )sin ( )  if III is true,

( ) ( ) ( )sin ( ) ( )  if IV is tr

i j i j ic j

i j i j ic j ip j

i j i j ik j

i j i j i j ik j ip j

y t s t t

y t s t t t

y t s t t

y t y t s t t t



 



 

  

   

  

   



 



  

 
1 1 1

1 1 1 1

ue,

( ) ( )sin ( )  if V is true,

( ) ( )sin ( ) ( )  if VI is true,

0  if VII is true.

i j i j io j

i j i j io j ip j

y t s t t

y t s t t t



 

  

   













 



           

Here: 

I. 1 1( ) ( )ik j k jd t R t   for any ( )jk K t  and  1 1 1( ) ( ) ( )ip j i j p jd t r t r t      for all 

1( )jp I t    and   1 1 1 1( ) ( ) and ( ) ( )q q

i j o j i j o jx t t y t t    X Y  for all  1,  2 ...,  q Q  

and 1st ( ) {2,  3}i jt   , 

II. 1 1( ) ( )ik j k jd t R t   for any 1( )jk K t   and  1 1 1( ) ( ) ( )ip j i j p jd t r t r t    for 

the nearest  1 1( ) ( )i j p jp I r t r t    and   1 1 1 1( ) ( ) and ( ) ( )q q

i j o j i j o jx t t y t t    X Y  

for all  1,  2 ...,  q Q  and 1st ( ) {2,  3}i jt   , 

III. 1 1( ) ( )ik j k jd t R t   for the nearest ( )jk K t  and 

1 1 1( ) ( ( ) ( ))ip j i j p jd t r t r t     for all 1( )jp I t   and 
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 1 1 1 1( ) ( ) and ( ) ( )q q

i j o j i j o jx t t y t t    X Y  for all 1,  2 ...,  q Q  and 

1st ( ) {2,  3}i jt   ,  

IV. 1 1( ) ( )ik j k jd t R t   for the nearest ( )jk K t  and 

1 1 1( ) ( ( ) ( ))ip j i j p jd t r t r t    for the nearest 1( )jp I t    and  

 1 1 1 1( ) ( ) and ( ) ( )q q

i j o j i j o jx t t y t t    X Y  for all 1,  2 ...,  q Q  and 

1st ( ) {2,  3}i jt   ,  

V. 1 1 1( ) ( ( ) ( ))ip j i j p jd t r t r t     for all 1( )jp I t   and 

 1 1 1 1( ) ( ) and ( ) ( )q q

i j k j i j k jx t t y t t    X Y  at least for one 1,  2 ...,  q Q  and 

1st ( ) {2,  3}i jt   , 

VI. 1 1 1( ) ( ( ) ( ))ip j i j p jd t r t r t     for the nearest 1( )jp I t   and 

 1 1 1 1( ) ( ) and ( ) ( )q q

i j k j i j k jx t t y t t    X Y at least for one 1,  2 ...,  q Q  and 

1st ( ) {2,  3}i jt   , 

VII. 1st ( ) {2,  3}i jt   . 

The spatial dynamics of k-ths agent-rescuers ( ( ))jk K t  is described by the 

following system of finite difference equations with the variable structure at moment

jt ( )jt T : 

(5)  

 
1 1 1

1 1 1 1

1 1 1

1 1 1

( ) ( )cos ( )  if VIII is true,

( ) ( )cos ( ) ( )  if  IX is true,

( ) ( )cos ( )  if X is true,

( ) ( ) ( )cos ( ) (

k j i j kc j

k j i j kc j kp j

k j i j ke j

k j k j i j ke j kp

x t s t t

x t s t t t

x t s t t

x t x t s t t



 



 

  

   

  

  



 



   

 

1

1 1 1

1 1 1 1

)  if XI is true,

( ) ( )cos ( )  if XII is true,

( ) ( )cos ( ) ( )  if XIII is true,

0  if XIV is true, 

j

k j i j ko j

k j i j ko j kp j

t

x t s t t

x t s t t t



 



  

   













 



       

(6) 

 
1 1 1

1 1 1 1

1 1 1

1 1 1

( ) ( )sin ( )  if VIII is true,

( ) ( )sin ( ) ( )  if  IX is true,

( ) ( )sin ( )  if X is true,

( ) ( ) ( )sin ( ) (

k j i j kc j

k j i j kc j kp j

k j i j ke j

k j k j i j ke j kp

y t s t t

y t s t t t

y t s t t

y t y t s t t



 



 

  

   

  

  



 



   

 

1

1 1 1

1 1 1 1

)  if XI is true,

( ) ( )sin ( )  if XII is true,

( ) ( )sin ( ) ( )  if XIII is true,

0  if XIV is true, 

j

k j i j ko j

k j i j ko j kp j

t

y t s t t

y t s t t t



 



  

   













 


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where 

VIII. 1st ( ) 0k jt    and 1 1 1( ) ( ( ) ( ))kp j k j p jd t r t r t     for all 1( )jp I t   and 

 1 1 1 1( ) ( ) and ( ) ( )q q

k j o j k j o jx t t y t t    X Y  for all  1,  2 ...,  q Q , 

IX. 1st ( ) 0k jt    and 1 1 1( ) ( ( ) ( ))kp j k j p jd t r t r t     for all 1( )jp I t   and 

 1 1 1 1( ) ( ) and ( ) ( )q q

k j o j k j o jx t t y t t    X Y  for all  1,  2 ...,  q Q , 

X. 1st ( ) 2k jt    and 1 1 1( ) ( ( ) ( ))kp j k j p jd t r t r t     for all 1( )jp I t   and 

 1 1 1 1( ) ( ) and ( ) ( )q q

k j o j k j o jx t t y t t    X Y  for all 1,  2 ...,  q Q ,  

XI. 1st ( ) 2k jt    and 1 1 1( ) ( ( ) ( ))kp j k j p jd t r t r t     for all 1( )jp I t   and 

 1 1 1 1( ) ( ) and ( ) ( )q q

k j o j k j o jx t t y t t    X Y  for all 1,  2 ...,  q Q ,  

XII. 1 1 1( ) ( ( ) ( ))kp j k j p jd t r t r t     for all ( )p I   and 

 1 1 1 1( ) ( ) and ( ) ( )q q

k j k j k j k jx t t y t t    X Y  at least for one 1,  2 ...,  q Q  and 

1st ( ) 1k jt   , 

XIII. 1 1 1( ) ( ( ) ( ))kp j k j p jd t r t r t     for the nearest 1( )jp I t   and 

 1 1 1 1( ) ( ) and y ( ) ( )q q

k j k j k j k jx t t t t    X Y at least for one 1,  2 ...,  q Q  and 

1st ( ) 1k jt   , 

XIV. 1st ( ) 1k jt   . 

The angles of the motion direction of appropriate agents towards the c-th crowd 

cluster ( ( ))jc C t  at moment jt ( )jt T  are: 

(7) 
1 1

1 1

ˆ ( ) ( )
( ) arctan

ˆ ( ) ( )

ic j i j

ic j

ic j i j

y t y t
t

x t x t


 

 





,  

(8) 
1 1

1 1

( ) ( )
( ) arctan

( ) ( )

kc j i j

kc j

kc j i j

y t y t
t

x t x t


 

 





,  

( )ji I t ,  ( )jk K t . 

The angles of shifting the motion directions of i-ths and k-ths agents 

( ( ),  ( ))j ji I t k K t   regarding their previous directions caused by the nearest 

neighbor p-th agent ( ( ))jp I t  appearing at moment jt ( )jt T  are: 

(9) 
1 1 1

1 1 1

( ) ( )sin( / 4) ( )
( ) arctan ,

4 ( ) ( )cos( / 4) ( )

p j ip j i j

ip j

p j ip j i j

y t r t y t
t

x t r t x t






  

  

 
 

 
   

(10) 
1 1 1

1

1 1 1

( ) ( )sin( / 4) ( )
( ) arctan ,

4 ( ) ( )cos( / 4) ( )

p j kp j k j

kp j

p j kp j k j

y t r t y t
t

x t r t x t






  



  

 
 

 
    

where 
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1 1 1( ) ( ) ( )ip j i j p jr t r t r t  
   , 

1 1 1( ) ( ) ( )kp j k j p jr t r t r t  
   . 

The angles of the motion directions of the i-th usual agent ( ( ))ji I t  towards 

the k-th agent-rescuer ( ( ))jk K t , as well as the motion of the k-th agent-rescuer 

( ( ))jk K t  towards the e-th emergency exit ( ( ))je E t  at moment jt ( )jt T  are: 

(11) 
1 1

1 1

ˆ ( ) ( )
( ) arctan

ˆ ( ) ( )

ic j i j

ic j

ic j i j

y t y t
t

x t x t


 

 





, 

(12) 
1 1

1 1

( ) ( )
( ) arctan

( ) ( )

ke j i j

ke j

ke j i j

y t y t
t

x t x t


 

 





. 

The angles of the bypassing directions of i-ths and k-ths agents 

( ( ),  ( ))j ji I t k K t   around the nearest o-th obstacle ( ( ))jo O t  at moment jt

( )jt T  are: 

(13)  
*

1 1( ) arg min ( ) ( )io j i j io jt t t      ,  

(14) *

1 1( ) argmin ( ) ( )ko j k j ko jt t t      . 

Here: 
*

1( )i jt 
, *

1( )k jt 
 are the angles of the current motion direction of appropriate 

agents, 

1( )io jt  , 1( )ko jt  are sets of angles of possible bypassing directions of 

appropriate agents around the nearest o-th obstacle ( ( ))jo O t  at moment jt ( ),jt T  

and 

(15) 

*

1 1

*

1 1

( ) ( )
( ) arctan

( ) ( )

io j i j

io j

io j i j

t y t
t

t x t

 

 






y

x
 , 

(16) 

*

1 1

*

1 1

( ) ( )
( ) arctan

( ) ( )

ko j k j

ko j

ko j k j

t y t
t

t x t

 

 






y

x
 , 

* *

1 1{ ( ),  ( )}io j io jt t x y , * *

1 1{ ( ),  ( )}ko j ko jt t x y are the sets of possible coordinates of 

appropriate agents provided they bypass the nearest o-th obstacle ( ( ))jo O t . These 

coordinates are computed through constructing the mental path of the i-th usual agent 

( ( ))ji I t  towards its target.  

For the determination of the nearest accessible coordinates located outside the 

obstacle, the usual arithmetic spiral constructed at the intersection point of the mental 

path and the obstacle can be used (see Fig. 2).  

The total number of evacuated usual agents at moment of the evacuation time 

T ( )T T  is 
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(17)  
0

( ) ( ),
T

i j

j

N T m t


  

where  

(18) 
1  if st ( ) 3,

( )
0  if st ( ) 3,

i j

i j

i j

t
m t

t


 


   ( )ji I t , jt T . 

The model has the following set of control parameters: 

  0 0( ) ,  ( )K t E t , are total number of agent-rescuers and emergency exits at 

moment 0t ;    

 0{ ,  },  ( )e eg h e E t , are the coordinates of e-th emergency exits;  

 0{ ( ),  ( )}, ( ),  ( ),  kc j kc j j jx t y t k K t с С t t T   , are the coordinates of the c-th 

crowd cluster computed with the fuzzy clustering algorithm [8] which are assigned 

to the k-th agent-rescuer;    

 0 0 0{ ( ),  ( )},  ( )k ks t t k K t  , are the speed and waiting time (delay) of the k-th 

agent-rescuer.    

The values of these parameters are defined at initial time 0t  (i.e., at the 

beginning of the emergency) with the exception being that the coordinates of crowd 

clusters are changed during the simulation time. 

As a result, the main optimization problem of the evacuation process can be 

formulated as follows. 

Problem A. The need to maximize the total number of evacuated agents and 

minimize the evacuation time through the set of control parameters:  

(19) 
 

 

0 0 0 0

0 0 0 0

( ) , ( ) , { , }, { ( ), ( )  }, { ( ), ( )}

( ) , ( ) , { , }, { ( ), ( )  }, { ( ), ( )}

max ( ),

min ,

e e kc j kc j k k

e e kc j kc j k k

K t E t g h x t y t s t t

K t E t g h x t y t s t t

N T

T











  

s.t., 

00 ( )K t K  , 00 ( )E t E  , 

1 2ea g a  , 1 2eb h b  , 1 2( )kc ja x t a  , 1 2( )kc jb y t b  , 00 ( )ks t s  , 

00 ( )k t   , 0( )k K t , 0( )e E t , ( )jс С t , jt T . 

Here, K , E ,  , s  are the maximum permitted values of appropriate parameters 

(upper limits). 

3. Parallel bi-objective real-coded genetic algorithm  

To solve the problem (19), a novel parallel real-coded genetic algorithm for bi-

objective optimization was developed (P-RCGA). The algorithm is based on the 

previously suggested parallel Multi-Agent Real-Coded Genetic Algorithms –  

MA-RCGA [1] and F-RCGA [9], as well as on the multi-objective genetic algorithm 

developed for multi-objective optimization – AGAMO [6]. P-RCGA extends the 

features of these algorithms through the ability to solve large-scale multi-objective 



 56 

optimization problems using real-coded heuristic operators, as the application of 

cluster-based approach to control of agent-rescuers behavior.   

The aggregated scheme of P-RCGA implemented for each agent-process is 

shown in Fig. 3.  

 

 
Fig. 3. Parallel real-coded genetic algorithm for multi-objective optimization 

 

P-RCGA uses different crossover and mutation operators suggested in  

[1, 19, 20, 24, 26, 31, 32].   
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In particular, a set of crossovers {LX, SBX, MSBX, DMSBX}and mutations 

{PM, UM, DUM, SUM}  is employed, for instance, LX is the Laplace Crossover 

[19], SBX is the Simulated Binary Crossover [26], MSBX is the Modified Simulated 

Binary Crossover [1], etc. The probabilistic selection of such operators in the genetic 

algorithm is implemented to achieve the maximum diversity of a population of 

potential decisions. 

P-RCGA uses both external iterations 
1 2{ ,  ,  ...,  }u T

t t t t


    , where T  is the 

number of external iterations, and internal iterations  
1 2{ ,  ,  ...,  }z T

t t t t


    , where T 

is the number of internal iterations for the generation of offspring-individuals that are 

potential decisions, as well as the internal simulation time 
1 2( { ,  ,  ...,  })j T

t t t t  

provided by the AnyLogic simulation tool. AnyLogic is used for the computation of 

objectives and fitness functions using offspring-individuals provided by the genetic 

algorithm. The main feature of P-RCGA (Fig. 3) is the suggested procedure of the 

computation of crowd cluster centers with following estimation of cluster densities 

with the help of fuzzy clustering algorithm [8].  

The aggregated architecture of the decision-making system developed for the 

optimization of an evacuation process is shown in Fig. 4. 

 

 
Fig. 4. Aggregated architecture of the developed decision-making system 

 

The scheme of the parallelization proposed for the developed parallel real-coded 

genetic optimization algorithm is presented in Fig. 5. 
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Fig. 5. Parallelization scheme of P-RCGA 

 

As shown in Fig. 5, the developed algorithm (P-RCGA) uses the multi-processes 

architecture. Within the proposed framework, each agent-process generates and 

updates own local populations of potential decisions with following exchanging by 

the best potential decisions (individuals) through the global population with the use 

of MPI (the Message Passing Interface). The sets of parent-individuals (e.g., 

consisting of 100 elements) selected in each local population with own potential of 

decisions are transferred to the global population and the other set of parent-

individuals (e.g., consisting of 10 elements) are retrieved back to update local 

populations. At the same time, the suggested simulation model of an evacuation 

process implemented in the AnyLogic is responsible for the computation of objective 

functions for the given set of decision variables (potential decisions) provided by 

agent-processes at each iteration of P-RCGA (Fig. 5). Moreover, such well-known 

technologies and interfaces are used as JDBC, JNI, OCI, etc., for providing the 

connections between the simulation model (AnyLogic), database (Oracle) and 

parallel genetic algorithm (implemented in C++). 

4. Results and discussion 

For an estimation of P-RCGA, different performance metrics are used, in particular, 

the processing time and the hypervolume, amongst other characteristics. The 

hypervolume metric (Z i t z l e r  and T h i e l e  [32]) measures the size of the space 

enclosed by all solutions on the Pareto front and a user-defined reference point (a 

slightly worse point than the nadir point). This indicator guarantees strict 

monotonicity regarding the Pareto dominance.   

The following test instances suggested in [17, 27] are used for the validation of 

P-RCGA: ZDT1 is the first unconstrained problem having the convex front, DTLZ2 

is the second multi-objective test problem having a spherical Pareto-optimal front, 

DTLZ7 is the third multi-objective test problem having the discontinuous front 

(Table 1). To simplify, the number of decision variables and objective functions in 

test instances equals to 2. 
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Table 1. Test instances for P-RCGA 

Title Objectives to be minimized Feasible ranges 

ZDT1 
1

1
2

,

1 ,

f x

f
f g

g




 
    

 

 

    where  1 9g y   

0 1x   

0 1y   

DTLZ2 

1

2

(1 )cos ,
2

(1 )sin ,
2

f g x

f g x





  
   

  


       

 

    where  2 2( 0.5) ( 0.5)g x y     

0 1x   

0 1y   

DTLZ7 
1

2

,

(1 ) ,

f x

f g h




 
 

where 

9
1 ( )

2
g x y   ,      1

12 1 sin(3 )
(1 )

f
h f

g
  


  

0 3x   

0 4y   

 

The performance metrics values computed for the suggested P-RCGA in 

comparison with the most known multi-objective GAs, in particular, -MOEA [18], 

NSGA-II [13], SPEA2 [16] using test instances are presented in Table 2. 

Table 2. Comparison of P-RCGA with other multi-objective GAs using test instances 

GA Performance metrics 
Test instances 

ZDT1 DTLZ2 DTLZ7 

P-RCGA 
Hypervolume 

Min: 0.434 

Median: 0.598 

Max: 0.611 

Min: 0.219 

Median: 0.222 

Max: 0.234 

Min: 0.681 

Median: 0.711     

Max: 0.789 

Processing time, s 12 10 14 

 -MOEA 
Hypervolume 

Min: 0.321 

Median: 0.459 

Max: 0.539 

Min: 0.213 

Median: 0.213 

Max: 0.214 

Min: 0.386       

Median: 0.428       

Max: 0.745 

Processing time, s 24 18 22 

NSGA-II 
Hypervolume 

Min: 0.136 

Median: 0.479 

Max: 0.544 

Min: 0.212 

Median: 0.212 

Max: 0.213 

Min: 0.602 

Median: 0.657 

Max: 0.695 

Processing time, s 29 32 38 

SPEA2 
Hypervolume 

Min: 0.416 

Median: 0.515 

Max: 0.545 

Min: 0.213 

Median: 0.212        

Max: 0.213 

Min: 0.608 

Median: 0.672        

Max: 0.708 

Processing time, s 18 22 29 

 

Mainly standard binary coded heuristic operators are used in  -MOEA, SPEA2 

and NSGA-II. In contrast, P-RCGA is based on real-coded crossover and mutation 

operators implemented on the individual level of agent-processes to generate 

offspring-individuals and select the best potential decisions. Thus, the application of 

real-coded heuristic operators combined with multi-agent architecture of P-RCGA 

improves the quality of the Pareto front in bi-objective optimization of an evacuation 

process.  
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In Fig. 6 the dynamics of the Inverted Generational Distance (IGD) is shown, 

that defines the remoteness of the Pareto front computed with the use of P-RCGA 

from the known reference front for considered test instances.  

 

 
Fig. 6. Dynamics of IGD for the Pareto front computed with the use of P-RCGA 

 

The evolutionary dynamics of non-dominated solutions generated by different 

(e.g., 4) agent-processes in P-RCGA for considered test instances is shown in Fig. 7. 

  

 
Fig. 7. Evolutionary dynamics of non-dominated solutions in P-RCGA 

 

As seen from Fig. 7, each agent-process generates own sets of non-dominated 

solutions which cardinalities are increased during the process of an evolutionary 

searching. 

The Pareto front computed with the use of P-RCGA in solving the Problem A is 

shown in Fig. 8.  
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Fig. 8. The Pareto front for the bi-objective optimization problem of an evacuation process computed 

with the use of P-RCGA 

5. Conclusion 

This paper aims to design a cluster-based optimization system for evacuation process 

in emergency using a suggested Parallel Real-Coded Genetic Algorithm (P-RCGA). 

The most important parameter of such systems is the evacuation time that should be 

minimized because of the probability of intoxication by harmful substances. On the 

other hand, agent-rescuers cannot have enough time for the fast evacuation of all 

usual agents. Therefore, the optimal control of important parameters such as the 

velocity and motion directions of agent-rescuers, number of emergency exits and 

other characteristics of an evacuation process is required. 

A new parallel real-coded genetic algorithm P-RCGA (Fig. 3) and the decision-

making system for the optimization of an evacuation process (Fig. 4) are suggested. 

A parallelization scheme of P-RCGA based on the interaction of agent-processes is 

suggested (Fig. 5). The system usage allows the Pareto-optimal solutions on the 

evacuation process to be searched (Fig. 8). P-RCGA was verified using well-known 

test instances (Table 1) and compared with other multi-objective genetic algorithms 

(Table 2). As a result, it was shown that using real-coded heuristic operators in 

combination with the suggested multi-agent parallel architecture of P-RCGA 

significantly improves the quality of the Pareto-front (a hypervolume metric and 

Inverted Generational Distance). 

Further research work will aim to design a complex 3D-simulator of an 

evacuation process aggregated with a real-coded genetic algorithm using fuzzy rules 

to control agent-rescuer behavior.    

Acknowledgments: This work was funded by the Russian Foundation for Basic Research (RFBR), 

Project No is 20-01-00002. 

 

https://kias.rfbr.ru/


 62 

R e f e r e n c e s 

1. A k o p o v, A. S., L. A. B e k l a r y a n, M. T h a k u r, B. D. V e r m a. Parallel Multi-Agent Real-

Coded Genetic Algorithm for Large-Scale Black-Box Single-Objective Optimisation. – 

Knowledge-Based Systems, Vol. 174, 2019, pp. 103-122.  

2. A k o p o v, A. S., L. A. B e k l a r y a n, A. K. S a g h a t e l y a n. Agent-Based Modelling of 

Interactions between Air Pollutants and Greenery Using a Case Study of Yerevan, Armenia. – 

Environmental Modelling and Software, Vol. 116, 2019, pp. 7-25. 

3. A k o p o v, A. S., L. A. B e k l a r y a n, A. K. S a g h a t e l y a n. Agent-Based Modelling for 

Ecological Economics: A Case Study of the Republic of Armenia. – Ecological Modelling, 

Vol. 346, 2017, pp. 99-118. 

4 .  A k o p o v, A. S., L. A. B e k l a r y a n. An Agent Model of Crowd Behavior in Emergencies. – 

Automation and Remote Control, Vol. 76, 2015, No 10, pp. 1817-1827. 

5. A k o p o v, A. S. Parallel Genetic Algorithm with Fading Selection. – International Journal of 

Computer Applications in Technology, Vol. 49, 2014, No 3/4, pp. 325-331. 

6. A k o p o v, A. S., M. A. H e v e n c e v. A Multi-Agent Genetic Algorithm for Multi-Objective 

Optimization. – In: Proc. of IEEE International Conference on Systems, Man and Cybernetics, 

Manchester: IEEE, 2013, pp. 1391-1395. 

7 .  A n t o n i n i, G., M. B i e r l a i r e, M. W e b e r. Discrete Choice Models of Pedestrian Walking 

Behavior. – Transportation Research Part B: Methodological, Vol. 40, 2006, No 8,  

pp. 667-687. 

8. B e k l a r y a n, A. L., A. S. A k o p o v. Simulation of Agent-Rescuer Behaviour in Emergency 

Based on Modified Fuzzy Clustering. – In: Proc. of International Joint Conference on 

Autonomous Agents and Multigene Systems, AAMAS, 2016, pp. 1275-1276. 

9. B e k l a r y a n, G. L., A. S. A k o p o v, N. K. K h a c h a t r y a n. Optimisation of System Dynamics 

Models Using a Real-Coded Genetic Algorithm with Fuzzy Control. – Cybernetics and 

Information Technologies, Vol. 19, 2019, No 2, pp. 87-103. 

10. B e l e v, B., D. D i m i t r a n o v, A. S p a s o v, A. I v a n o v. Application of Information 

Technologies and Algorithms in Ship Passage Planning. – Cybernetics and Information 

Technologies, Vol. 19, 2019, No 1, pp. 190-200. 

11. B e z d e k, C. J.  Cluster Validity with Fuzzy Sets. – Journal of Cybernetics, Vol. 3, 1974, No 3,  

pp. 58-73. 

12. B e z d e k, C. J. Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, Massa, 

Kluwer Academic Publishers, 1981.  

13. B l e u l e r, S., M. B r a c k, L. T h i e l e, E. Z i t z l e r. Multiobjective Genetic Programming: 

Reducing Bloat Using SPEA2. – In: Proc. of 2001 Congress on Evolutionary Computation 

(IEEE Cat. No 01TH8546), Seoul, South Korea, 2001, pp. 536-543. 

14. B r e e r, V. V., D. A. N o v i k o v, A. D. R o g a t k i n. Mob Control: Models of Threshold 

Collective Behavior. – Studies in Systems, Decision and Control, Vol. 85, Springer, Cham, 

2017, pp. 1-134.  

15. D e  C e b a l l o s, J. P. G., F. T u r é g a n o-F u e n t e s, D. P e r e z-D i a z, M. S a n z-S a n c h e z, 

C. M a r t i n-L l o r e n t e, J. E. G u e r r e r o-S a n z. 11 March 2004: The Terrorist Bomb 

Explosions in Madrid, Spain-Analysis of the Logistics, Injuries Sustained and Clinical 

Management of Casualties Treated at the Closest Hospital. – Critical Care, Vol. 9, 2004,  

No 1, pp. 104-111. 

16. D e b, K., A. P r a t a p, S. A g a r w a l, T. M e y a r i v a n. A Fast and Elitist Multiobjective Genetic 

Algorithm: NSGA-II. – IEEE Transactions on Evolutionary Computation, Vol. 6, 2002, No 2, 

pp. 182-197. 

17. D e b, K., L. T h i e l e, M. L a u m a n n s, E. Z i t z l e r. Scalable Multi-Objective Optimization Test 

Problems. – In: Proc. of Congress on Evolutionary Computation (CEC-2002), IEEE Press, 

2002, pp. 825-830.  

18. D e b, K., M. M o h a n, S. M i s h r a. Evaluating the -Domination Based Multi-Objective 

Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions. – Evolutionary 

Computation, Vol. 13, 2005, No 4, pp. 501-525. 

https://publications.hse.ru/view/246481007
https://publications.hse.ru/view/246481007
https://publications.hse.ru/view/199693496
https://publications.hse.ru/view/199693496
https://publications.hse.ru/view/92344173
https://publications.hse.ru/view/92344173


 63 

19. D e e p, K., M. T h a k u r. A New Crossover Operator for Real Coded Genetic Algorithms. – 

Applied Mathematics and Computation, Vol. 188, 2007, No 1, pp. 895-911. 

20. D e e p, K., M. T h a k u r. A New Mutation Operator for Real Coded Genetic Algorithms. – Applied 

Mathematics and Computation, Vol. 193, 2007, No 1, pp. 211-230.  

21. H e l b i n g, D., P. M o l n a r. Social Force Model for Pedestrian Dynamics. – Physical Review E., 

Vol. 51, 1995, No 5, pp. 4282-4286. 

22. H e l b i n g, D., I. F a r k a s, T. V i c s e k. Simulating Dynamical Features of Escape Panic. – 

Nature, No 407, 2000, pp. 487-490. 

23. H e l b i n g, D., J. I. F a r k a s, P. M o l n à r, T. V i c s e k. Simulation of Pedestrian Crowds in 

Normal and Evacuation Situations. – In: Proc. of PED01, Pedestrian and Evacuation 

Dynamics, Springer, Heidelberg, 2002, pp. 21-58.  

24. H e r r e r a, F., M. L o z a n o, J. L. V e r d e g a y. Tackling Real-Coded Genetic Algorithms: 

Operators and Tools for Behavioural Analysis. – Artificial Intelligence Review, Vol. 12,  

1998, No 4, pp. 265-319. 

25. H e r r e r a, F., M. L o z a n o. Gradual Distributed Real-Coded Genetic Algorithms. – IEEE 

Transactions on Evolutionary Computation, Vol. 4, 2000, No 1, pp. 43-63. 

26. K u m a r, A., K. D e b. Real-Coded Genetic Algorithms with Simulated Binary Crossover: Studies 

on Multimodal and Multiobjective Problems. – Complex Systems, Vol. 9, 1995, pp. 431-454. 

27. L i, H., Q. Z h a n g. Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D 

and NSGA-II. – IEEE Transactions on Evolutionary Computation, Vol. 13, 2009, No 2,  

pp. 284-302. 

28. M o u s s a i d a, M., D. H e l b i n g, G. T h e r a u l a z a. How Simple Rules Determine Pedestrian 

Behavior and Crowd Disasters. – PNAS, Vol. 108, 2011, No 17, pp. 6884-6892. 

29. O l t e a n u, M., N. P a r a s c h i v, P. K o p r i n k o v a-H r i s t o v a. Genetic Algorithms vs. 

Knowledge-Based Control of PHB Production. – Cybernetics and Information Technologies, 

Vol. 19, 2019, No 2, pp. 104-116. 

30. Th a k u r, M., A. K u m a r. Optimal Coordination of Directional over Current Relays Using a 

Modified Real Coded Genetic Algorithm: A Comparative Study. – International Journal of 

Electrical Power & Energy Systems, Vol. 82, 2016, pp. 484-495. 

31. T h a k u r, M., S. S. M e g h w a n i, H. J a l o t a. A Modified Real Coded Genetic Algorithm for 

Constrained Optimization. – Applied Mathematics and Computation, Vol. 235, 2014,  

pp. 292-317. 

32. Z i t z l e r, E., L. T h i e l e. Multiobjective Evolutionary Algorithms: A Comparative Case Study 

and the Strength Pareto Approach. – IEEE Transactions on Evolutionary Computation, Vol. 3, 

1999, No 4, pp. 257-271. 

 

Received: 14.05.2020; Second Version: 23.06.2020; Accepted: 30.06.2020 (fast track) 
 

 

 

javascript:void(0)

