
 32

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 20, No 3

Sofia 2020 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2020-0026

Microservices Centric Architectural Model for Handling Data

Stream Oriented Applications

Milu Mary Philip, Amrutha Seshadri, B. Vijayakumar

Department of Computer Science, Birla Institute of Technology and Science Pilani, Dubai Campus,

Dubai, United Arab Emirates

E-mails: p20120003@dubai.bits-pilani.ac.in f20150046@dubai.bita-pilani.ac.in

vijay@dubai.bits-pilani.ac.in

Abstract: The present-day software application systems are highly complex with

many requirements and variations, which can only be handled by more than one

architectural pattern. This paper focuses on a combinational architectural design,

with the micro-services at the center and supported by the model view controller and

the pipes and filter architectural patterns to realize any data stream-oriented

application. The proposed model is very generic and for validation, a prototype GIS

application has been considered. The application is designed to extract GIS data

from internet sources and process the data using third party processing tools. The

overall design follows the micro-services architecture and the processing segment is

designed using pipes-and-filters architectural pattern. The user interaction is made

possible with the use of the model view controller pattern. The versatility of the

application is expressed in its ability to organize any number of given filters in a

connected structure that agrees with inter-component dependencies. The model

includes different services, which make the application more user-friendly and secure

by prompting client for authentication and providing unique storage for every client.

This approach is very much useful for building applications with a high degree of

flexibility, maintainability and adaptability. A qualitative comparison is made using

a set of criteria and their implementation using the different architectural styles.

Keywords: Architectural Pattern, Microservices, Model View Controller, Pipes and

Filters, Software Architecture.

1. Introduction

Software Architecture can be defined as a set of principal design decisions that

facilitate structural building and assembly of various components that make up a

software application system [1]. It is a key aspect of software development and can

be defined as the blueprint of any software application system [2]. It requires

information on the number and type of inputs and outputs and component inter-

dependencies. The software architecture of an application system is thus defined as a

group of structures that constitutes the different elements of the application system,

mailto:f20150046@dubai.bita-pilani.ac.in

 33

the relations and dependencies between them and the features of the same. It provides

module, component-connector and allocation structure for application system

development.

The implementation of large-scale applications requires carefully planned

structural designs and tools to ensure success in the market and industry. An

architecturally rigid application ages with time and runs the risk of going extinct. The

monolithic design, which is the oldest and traditional way of architectural design [3],

will not be able to cope up with the growing needs and complexities of application

systems built today. The software application system that is implemented using such

a design faces limited scalability, dependency issues that arises due to large number

of components and connectors, increases the maintenance cost and efforts and so on.

The micro-services architectural style offers a solution to this problem. It structures

the application as a collection of services, and each service implements a

functionality of the business logic [16].

A typical micro-services architecture comprises of separate modules for client

and server side. The server modules can be hosted on a local area network or internet.

The client module can reside at a node in the local area network, internet, mobile

device or IoT device. Authentication, on the server side, is done by the component

API Gateway. It also ensures that the services do not go outside the scope. The service

registry in the micro-services architectural style keeps track of the health of the

services and notifies the client whenever a service is down. The core component of

the server are the micro-services themselves and each service implements specific

functionality. Hence testing and debugging can be carried out easily for the micro-

services. They can adapt to new technology with gradual transition and continuous

integration. The communication between the components is handled using message

queues. Micro-services simplify the design and implementation of individual

services. The benefits of the micro-services architectural style include agility,

scalability, ability to evolve and maintainability of large-scale distributed systems,

reliability, resilience, increased developer productivity, separation of concerns and

ease of deployment [4].

In this paper, we present an architectural model that taps the potential of three

different architectural styles ‒ micro-services, pipes and filters and Model View

Controller (MVC). This approach increases overall flexibility, maintainability and

adaptability, especially for large application systems that involve many independent

components. This architectural model proposed in this work is generic. It has been

tested successfully for a prototype GIS maps processing system, that involves

processing of the geographical maps in streams.

This paper is organized as follows: Section 2 gives an overview of the existing

works using the micro-services, MVC and pipes-and-filters architectural patterns. It

also describes a few real-time GIS application systems. Section 3 proposes an

architectural model using a combination of three architectural styles. Section 4

discusses the experimental set-up, the implementation aspects and a test scenario to

demonstrate the working of a prototype GIS maps processing system. In addition, a

qualitative comparison is made using a set of criteria and their implementation using

the different architectural styles. The benefits of the proposed combinational

 34

architectural style are highlighted. The last section summarizes the current work and

suggests directions for future work.

2. Related work

A good architecture must be capable of evolving with the technology that builds upon

it. As requirements become more diverse and systems that serve these demands

become more complex, it is seen that the traditional monolithic design is becoming

dated. It is rapidly being replaced by a more efficient and fresher architectural model

‒ the micro-services architecture. D r a g o n i et al. [3] discuss about importance of

micro-services and their current applications. A monolithic system design involves a

high degree of inter-dependencies between the modules of an application system.

This in turn leads to implementation, maintenance issues for the system. The micro-

services overcome the above issues. In this architectural style, the application

modules work independently, cohesively and communicate solely via messages. A

comparison is drawn between monolithic and micro-services architectures by

S i n g h and P e d d o j u [5]. Their study shows that a micro-services based

application outperforms a monolithic application. The granular design of the micro-

services architecture, allows for different parts of an enterprise work independently

and efficiently.

Micro-services architecture is an evolutionary design “born out of the industry”

[4]. It also discusses how advancements in networking and the introduction of cloud

technology have popularized solutions like micro-services. With smart cities and IoT

technology soon becoming a reality, micro-services architecture offers a stepping-

stone for designers and developers alike. K r y l o v s k i, J a h n and P a t t i [7]

discuss about the implementation of a micro-services-based platform for deploying

IoT systems in smart cities. F e t z e r [6] explains the importance of the micro-

service-pattern for building critical applications. The loose-coupling of the services

enables load balancing, elastic scaling and high availability of applications. A micro-

kernel-based security system combined with secure containers ensures

confidentiality, integrity and correct execution of the application.

The Pipes and Filters (P&F) pattern, a simple yet powerful architecture, can be

chosen to model the processing segment for any application. The architectural style

comprises of a source and a sink and a series of filters or processing units connected

by pipes or links that stream data between filters. This pattern offers benefits such as

interconnection of non-interdependent entities and ease of modification of

components, thereby reducing the maintenance costs and platform-dependence [8].

This architectural model is also characterized by its granularity, i.e., it can handle

both low level and high-level tasks (especially the large-scale image processing tasks

that make up the example map-processing application described in this paper). The

Filter Chain is an abstracted view of the pipes and filters architectural model. Filters

correspond to independent but adjacent processing steps that enrich or refine data

arbitrarily. They consume input data and deliver output. Pipes interconnect the filters

in uniform channels (buffers) to incrementally process data.

 35

S c h e i b l e r, L e h m a n n and R o l l e r [9], in their paper, propose a solution

for the problem of data integration in production systems. As the complexity and cost

of storing/maintaining redundant data in several places is high, the need for effective

integration patterns that will allow data flow between applications is acute. The

application of the P&F model is highlighted as a 'P&F mapped workflow architecture'

pattern. It resolves the conflict between Pipes and Filter and Workflow architectures

used. The paper also describes how the two solutions can be integrated – P&F

architecture implemented using flow technology by transforming P&F elements into

workflow constructs. It illustrates that P&F architecture does not require its own

implementation but can be converted into appropriate models to suit the system ‒

thus establishing the versatility of the P&F model.

G u g g i [10] presents middleware architecture for smart cameras network by

extending the P&F architecture along with the self-aware and self-expressive

properties. Every filter in the modified P&F architecture has a number of input and

output filters. Sending data back to source filter/forwarding to output filter, upon

some parameter modification request, is done automatically. This automatic

reconfiguration of parameters represents the self-expressive principle. The overall

performance of the system is optimized using the automatic adaptation to parameter

changes. The data processing is brought as close as possible to the source. This

prevents rejection of data at the destination, thus making the middleware system self-

aware. These two key properties make the system more adaptable to changing

conditions in the environment.

The internet and its usages have been ever-growing and evolving since its

conception. Today, the internet supports a wide range of facilities, most of which

require remote processing, easy-to-navigate user-interfaces, etc. and most

importantly, the isolation of design, development and deployment. The MVC

architectural model is one of the most widely used architectural models as it is

designed to cater to the above mentioned needs, specifically. Web applications and

services should be capable of processing large amounts of diverse data with minimum

overhead and downtime. D r a g o s-P a u l and A l t a r [11] discusses the advantages

of using the MVC architectural model in the rapid development of web applications

by proposing a thin Model – Fat Controller design. The design reduces application

development time drastically and improves quality of work for both beginners and

experts alike. The MVC architectural model can also be easily tailored to meet the

developer’s needs. M a t i a s, P a l m a and O l i v e i r a [12] have presented model-

based software application development approach derived from the MVC

architectural design, for the specific purpose of computing independence and to

develop a standard for the same. The combinational architectural model described in

this current work considers MVC as one of the architectural patterns to control user-

input and handle user-interaction.

Geographic Imaging System (GIS), is becoming more and more relevant today

with the advent of the GPS and other mapping technologies. It offers solutions for

the processing of large amounts of real-time data. The architectural design of a

prototype GIS maps processing system is discussed in the current work. It is based

on a combination of three architectural patterns – Micro-services, Pipes & Filter and

 36

Model View Controller. The applications of GIS technologies are numerous.

Landslide hazard prediction, detection and assessment is one of the most popular

applications of GIS technology in disaster management. H u a b i n et al. [13], present

a GIS-based solution for landslide assessment. Their solution is based on GIS and

Digital Elevation Modelling (DEM) techniques to map the landslides and evaluate

hazard, with high reliability and accuracy. The current work involves the GIS map-

overlaying feature, for effective spatial comparison of different maps at common

geographical locations.

S h i r a z i et al. [14] describe a modified DRASTIC solution that uses GIS for

groundwater mapping. The DRASTIC method evaluates the pollution level for

groundwater regionally and it is widely used in Europe and Latin America. The most

common procedures included in this method are -converting hardcopy maps to digital

format, using well log to create groundwater depth map, using well location

information and well log pumping data to create map of saturated hydraulic

conductivity, creating final vulnerability maps from overlaying individual

characteristic maps. A similar application of GIS maps and software was used to

study thermal perception maps to determine the most comfortable times and regions

for recreation in the Isparta Province [15]. These procedures, implemented as

independent tasks, require considerable amount of effort and time. The combinational

architectural model proposed in this paper significantly enhances the operation and

performance of the above-mentioned complex tasks. In this paper, the micro-services

architecture has been used in combination with architectural patterns like model view

controller and pipes and filters. This approach serves the purpose of user interactivity

and stream mode of operation for any application system in a significant manner.

With this background, the paper realizes the combination of the aforementioned

architectural models through the prototype GIS map-processing application. GIS, or

Geospatial Imaging Systems, which has recently become indispensable for almost

every large-scale mapping and planning project. It is widely used in navigation,

geology, disaster management, resource management and agriculture, to name a few.

Integrated with AI and Data Mining, it is bound to be part of every application that

uses real-time data analysis.

3. Model description

This section describes a micro-services-centric architectural model for data stream

applications as shown in Fig. 1. It is supported with MVC and P&F patterns to realize

the functions of data streaming applications. The server-side handles client

authentication, provides separate micro-services for input, processing (download,

union and transform) and output and also maintains a service registry to track the

availability of the micro-services. The client-side enables multiple clients to connect

to the server and avail the micro-services pertaining to the application.

This model has been realized and validated for a prototype GIS map processing

system. The GIS application system processes vector data in the form of maps using

third party GIS processing software. Here, the input, processing and output services

are realized using micro-services architectural style.

 37

Fig. 1. Micro-services Centric Architectural Model for Data Stream Applications

The processing service is implemented using pipes-and filters architectural style

and interactivity with client is established using MVC architectural style. The

different components of the architectural design are as follows.

3.1. Authentication

The identity of the user is being validated in this segment. Upon launching the

application, the user will be required to register or log-in to the system. The

credentials are being checked in the user database. The access to the subsequent

segments of the application system is granted only to the valid users. To register as a

new user or to remove an existing user from the database, administrator privileges

are required (authentication done using the admin-password). The user database will

be reset at every launch.

3.2. Input as a service

The input service is invoked by the main method of the application. It prompts the

client to enter the names of the filters required for the processing of the input maps,

the input entities (here, links (URLs) of the GIS vector maps that must be

downloaded) and a user-tag to identify the client’s data. The input entities are

typically stored in a text file. This is sent to the processing service as an input data

stream.

3.3. Service registry

The application is supported by the Eureka Server (also known as Discovery Server)

for service registration and discovery. The Eureka Server is used in conjunction with

the Spring Cloud Framework for developing the micro-services. It keeps track of all

the micro-services present in the application system. It records the IP address and

ports on which these services run and notifies the user whenever a service is down.

3.4. Processing as a service

The processing service has a pool of filters that implement different processing

functionalities of any application system. It contains a filter bank which comprises

 38

one or more filters. The individual filters can be connected in series (one to n number

of filters), in parallel (zero to m number of filters) or in series-parallel connection.

Each filter implements a specific functionality based on the user needs and demands.

For the GIS map processing application system that has been discussed in this paper,

the client or the user has selected the different functionalities to be ‒ Download,

Union and Transform. Each function is realized using a filter program that processes

the input in streams and provides the processed output to pipes.

Fig. 2 gives an overview of the structure of the processing service in the GIS

map processing application system. The following subsections discuss each

component in detail.

Fig. 2. Filter Bank for the processing service of a prototype GIS application system

3.4.1. Download (F1)

The download filter takes the input text file provided by the client and downloads the

vector maps as shape-files (.shp) from different URLs. Every set of URLs will invoke

an instance of the downloader. The filter downloads for every set concurrently. The

downloaded maps are stored in specific locations for each client.

3.4.2. Union (F2)

The union filter takes the downloaded maps from the download filter. The QGIS

application is then invoked to launch the union filter for processing. The input maps

are processed incrementally. The processed output maps will be piped to the

consecutive transform filter.

3.4.3. Transform (F3)

The transform filter partially geo-references the maps obtained from the union filter.

The QGIS application is invoked to launch the transform filter for processing. This

filter outputs the transformed map to the output service.

3.5. Output as a service

The output service creates a final output folder for every client. It pipes the output of

the processing service to the respective output folder in p output streams for p sets of

input given by the client.

4. Algorithm M_PF_MVC

This section discusses in detail the steps involved in realizing the combinational

architectural model described in the previous section.

The actions of the algorithm outlined in Fig. 3 are described as follows. When

a client establishes a session with the application system, the application prompts for

authentication. The client is required to log-in or register with the application.

However, only administrators are permitted to register new users or remove existing

 39

users from the user database. Administrators are authenticated using the admin-

password. Once authentication is completed successfully, the input service is

initiated. It prompts the client to choose the filters required for processing the input

maps, from the filter bank. It also requires the client to enter the file-path to the file

containing the download links of the input maps and a unique identifier for

identifying the client’s data.

Fig. 3. Generic Algorithm M_PF_MVC

Fig. 4. Processing Service for prototype GIS Application system

 40

The processing service is then initiated and filter processing is launched. Fig. 4

shows the operation of the processing service specific to the GIS application system.

The prototype GIS application system realized in this paper offers three filters for

processing, namely: download, union and transform. Finally, after all the data has

been processed, the output of the last filter is piped to the output service and made

available for the client to collect and view.

5. Implementation

The GIS map processing system, has been implemented using the JAVA and Python

programming languages along with QGIS (Version 2.18.17), which is an open-source

software application that handles GIS maps. The model has been implemented

successfully on a campus wide local area network of our university. The server side

included a host computer with a designated IP address and running WINDOWS

operating system. The client side included the local area network nodes accessible

from around 200 locations inside the campus. The map-sets used for testing the

application were vector data stored as shape-files (.shp format), collected from

Natural Earth data repository. It spans the entire earth, on a 1:50 m scale. The GIS

map processing system is implemented using both JAVA and PYTHON libraries. It

can process multiple maps simultaneously. It is also highly modifiable and can handle

different sources of download. It has been successfully tested for the input maps

collected from different client nodes. The test scenario is shown below.

5.1. Test scenario

Input: Text file with the URLs from where the maps must be downloaded and the

choice of filters.

Output: Merged/Transformed map.

The interface shown in Fig. 5 clearly shows the interaction with the user. The

user authentication as described in Section 3.1 above is detailed here.

Fig. 5. User Interface for Authentication

The client is prompted for the Sign In, Sign Up and Remove User options. The

client enters the login details and will be added to the user database by the

administrator. Only valid clients are given the permission to proceed further in the

application system. The client supplies a selection of filters required for the

 41

processing of the input maps to the input service, along with the download links for

the input maps in a text file and a user tag that will be used later to uniquely identify

the client’s data. This is shown in Fig. 6.

Fig. 6. User Interface to enter Client requirements

This is followed by the service registry and discovery for the services as shown

in Fig. 7.

Fig. 7. Eureka Server Registry displaying all discovered services

All the required initial directories tagged with the user-name (here, client1) are

created and the maps are downloaded, as shown in Fig. 8 (i-iv) using the download

filter. The maps are then piped to the Union filter. The QGIS algorithm for union is

invoked to process the maps. The merged map shown in Fig. 9 is then piped to the

transform filter. The QGIS algorithm geo-transformation is invoked to process the

merged map. The output-service makes the final output available for the client in the

respective folder.

Fig. 8. Downloaded maps from “download” filter

 42

Fig. 9. Processed Map after download, union and transform steps

5.2. Discussion

Table 1 shows a qualitative comparison using a set of criteria and their

implementation using the different architectural styles.

Table 1. Architectural Patterns Comparison with proposed Combinational Architectural Design

Sl

No
Architectural Patterns Flexibility Scalability

Stream

Processing
Availability

1. Pipes and filters Possible
Not

possible
Possible No

2. Model view controller

Limited, due to

decoupling of

models, views and

controllers

Possible
Not

possible
No

3. Micro-services Possible Possible
Not

possible
Yes

4.

Architectural design

using combination of

P&F, MVC and micro-

services

Possible Possible Possible Yes

The architectural design discussed in this paper, uses a combination of three

architectural patterns. It facilitates the processing of input data streams, user

interactivity and the execution of various functions of an application system as

independent services. The component-connector structure facilitates

insertion/deletion of components. The order of processing of the components can be

changed according to the user requirements. It is easy to identify a faulty component

in the application and isolate it rather than traversing through the entire code. This

approach makes it possible to locate and correct the faults in any component quickly,

without affecting the regular run of the application. The pipes enable continuous flow

of data between the components. This minimizes lags during the processing. Since

the pipes are the only means of communication between the components, data access

is limited to only the participating components thus ensuring their safety and

integrity. The proposed architecture is flexible and scalable to any number of clients.

The components are modifiable without affecting others, and the possibility of a

single point of failure is significantly reduced.

 43

6. Conclusion

This paper deals with a combinational software architectural model for data

streaming applications. The micro-services pattern has been deployed for the

distribution of services among the various filter components. The pipes and filters

architectural pattern facilitates the concurrent processing of input data streams

originating from different client sites. The model view controller pattern handles the

user interaction and initiates the execution of the filter components.

When a client node sets up a session with the application, it is first authenticated

using a user-name and password that is specific to every registered user. The input

service accepts the different links or URLs for the input data stream from the client

and selects the filters that are needed for processing. The service registry checks the

health status of all services, before processing is initiated. The processing service uses

the components or filters from the filter bank and executes them in the pipeline mode.

Finally, the output service directs the final processed output from the processing

service to the corresponding output folders of the registered users.

The model discussed in this paper is very generic. It can handle any data stream

oriented application effectively. It has been tested successfully for a prototype GIS

maps processing system. This application system has four independent services –

authentication, input, processing and output. The download, union and transform are

the user selected filters and they constitute the processing service. The output service

is used to provide the processed output maps to the client. Thus, the failure of any

one service does not affect the others or disrupt the run of the application system. The

current work also offers the following benefits such as ease of recombination and

reuse, concurrent processing of streams of data, absence of intermediate files and

increased scalability. In addition, a software architect can develop flexible

applications using different filters or component libraries. This work can be extended

further by including additional micro-services and architectural patterns to enhance

agile software development.

R e f e r e n c e s

1. T a y l o r, R. N. Software Architecture: Many Faces, Many Places, yet a Central Discipline. – In:

ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2009, pp. 303-304.

2. B a s s, L., P. C l e m e n t s, R. K a z m a n. Software Architecture in Practise. 3rd Ed. 2012.

3. D r a g o n i, N., S. G i a l l o r e n z o, A. L. L a f u e n t e, M. M a z z a r a, F. M o n t e s i.

Microservices: Yesterday, Today and Tomorrow. – In: Present and Ulterior Software

Engineering, Springer, 2017, pp. 195-216.

4. A l s h u q a y r a n, N., N. A l i, R. E v a n s. A Systematic Mapping Study in Microservices

Architecture. – In: Proc. of IEEE 9th International Conference on Service Oriented Computing

and Applications, 2016, pp. 44-51.

5. S i n g h, V., S. K. P e d d o j u. Container Based Microservices Architecture for Cloud Applications.

– In: Proc. of International Conference on Computing, Communication and Automation

(ICCCA’17), 2017, pp. 847-852.

6. F e t z e r, C. Building Critical Applications Using Microservices. – IEEE Security and Privacy,

Vol. 14, 2016, No 6, pp. 86-89.

7. K r y l o v s k i, A., M. J a h n, E. P a t t i. C Designing a Smart City Internet of Things Platform with

Microservices Archotecture. – In: Proc. of 3rd International Conference on the Future of the

Internet of Things and Cloud, 2015, pp. 25-30.

 44

8. L a n g h o r s t, A., S. M a r t i n. Pipes and Filters Architectural Pattern. Hasso-Plattner-Institute for

Software Systems Engineering, Potsdam, Germany, 2004.

9. S c h e l e r, T., F. L e h m a n n, D. R o l l e r.Container Based Microservices Architecture for Cloud

Applications. – In: Proc. of International Conference on Computing, Communication and

Automation (ICCCA’17) , 2017, pp. 847-852.

10. G u g g i, H. Self-aware Middleware for Smart Camera Networks. – In: IEEE International

Conference on Pervasive Computing and Communications Workshops, 2012, pp. 566-567.

11. D r a g o s-P a u l, P ., A. A l t a r. Designing an MVC Model for Rapid Web Application

Development. – Procedia Engineering, Vol. 69, 2014, pp. 1172-1179.

12. M a t i a s, L. V., J. G. P a l m a, F. O l i v e i r a. Definition of a Computing Independent Model and

Rules for Transformation Focused on the Model View Controller Architecture. – International

Journal of Computer, Electrical, Automation, Control and Information Engineering, Vol. 11,

2017, No 2, pp. 244-251.

13. H u a b i n, W., L. G a n g j u n, X. W e i y a, W. G o n g h u i. GIS-Based Landslide Hazard

Assessment: An Overview. – Progress in Physical Geography, Vol. 29, 2005, No 4,

pp. 548-567.

14. S h i r a z i, S. M., H. M. I m r a n, S. A k i b, Z. Y u s o p, Z. B. H a r u n. Groundwater Vulnerability

Assessment in the Melaka State of Malaysia Using DRASTIC and GIS Techniques. –

Environmental Earth Sciences, Vol. 70, 2013, No 5, pp. 2293-2304.

15. T o p a y, M. Mapping of Thermal Comfort for Outdoor Recreation Planning Using GIS: The Case

of Isparta Province (Turkey). – Turkish Journal of Agriculture and Forestry, Vol. 37, 2013.

16. G o s, K., W. Z a b i e r o w s k i. The Comparison of Microservice and Monolithic Architecture. –

In: Proc. of IEEE International Conference on the Perspective Technologies and Methods in

MEMS Design (MEMSTECH’20), 2020, pp. 150-153.

Received: 22.10.2018; Second Version: 15.06.2020; Accepted: 09.07.2020

