
 3

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 20, No 3

Sofia 2020 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2020-0024

CRUDyLeaf: A DSL for Generating Spring Boot REST APIs

from Entity CRUD Operations

Omar S. Gómez1, Raúl H. Rosero1, Karen Cortés-Verdín2
1GrIISoft Research Group – Escuela Superior Politecnica de Chimborazo, Riobamba 60155, Ecuador
2Universidad Veracruzana, Xalapa 91090, Mexico

E-mails: ogomez@espoch.edu.ec rrosero@espoch.edu.ec kcortes@uv.mx

Abstract: Domain-Specific Languages (DSLs) are programming languages designed

specifically to express solutions to problems in a particular domain. It is said they

foster productivity and quality. In this work we describe CRUDyLeaf, a DSL focused

on the generation of Spring Boot REST APIs from entity CRUD operations. Spring

Boot is an open source Java-based framework used to implement the REST

architecture style. It has gained popularity among developers mainly because it

allows to build stand-alone and production ready software applications (avoiding the

use of an application server). Through seven proposed stages (domain immersion,

golden application implementation, syntax definition, meta model generation, code

generator implementation, deployment, and refinement) we describe the development

of this DSL. We also exemplify and evaluate the proposed DSL. Our findings suggest

a yield automation rate of 32.1 LOC (Lines Of Code) for each LOC written in this

DSL, among other observed benefits.

Keywords: CRUDyLeaf, DSL, Domain-Specific Language, Software Engineering,

Spring Boot.

1. Introduction

Nowadays Domain-Specific Languages (DSLs) are so popular that they have begun

to be used in different domains such as: law [1], blockchain smart contracts [2],

genomics [3], automotive [4], seismology [5], cybersecurity [6], electrical

engineering [7], mathematics [8], among other disciplines. DSLs are specific

languages designed and implemented to address problems from particular application

domains, as the ones previously mentioned.

At a glance, a DSL is composed of a concrete syntax, which defines the notation

for implementing a program. It may be textual, graphical or tabular [9]. It also

consists of an in-memory representation of the concrete syntax known as the meta-

model that contains semantical information about the language notation, i.e., the

abstract representation of the language. Optionally, code generation can be part of a

DSL. Once having the meta-model, it is possible to generate code from the given

DSL.

 4

According to [10], DSLs can be developed under a model-based approach or a

text-based approach. Model-based implementation represents the language as a meta

model, so the coded program is an instance of the given meta model. On the other

hand, text-based approaches represent the language as a set of grammar rules and the

program as a text that conforms to the given rules.

DSLs can also be classified as internal or external ones. An internal DSL is

either built on top of an existing language (general programming language) or it

extends another language which is commonly packaged as a language library.

Regarding an external DSL, it is implemented through an independent interpreter or

compiler, i.e., the language itself is separate from the language used for developing

it [11].

In this work we present CRUDyLeaf, an external text-based DSL used for

building Spring Boot REST endpoints (APIs) by defining entities and CRUD (Create,

Read, Update, Delete) persistent storage operations. Spring Boot is a widely adopted

open source Java-based framework mainly used to implement and expose REST

resources (also known as RESTful APIs, endpoints, services or microservices). The

DSL here presented has been developed by the following seven proposed stages.

The rest of the document is organized as follows: Section 2 describes the related

work. Section 3 describes the architecture of a typical Spring Boot application that

implements the REST architectural style. Section 4 describes the structure of the

proposed DSL. Section 5 exemplifies and evaluates the use of the proposed DSL.

Finally, Section 6 presents the discussion and conclusions.

2. Related work

In the context of the present work, we found a couple of works that address the use

of domain-specific languages in the domain of the REST architecture style. In the

first work found [16], authors propose a DSL for specifying REST based contracts

that can be translated into source code. Authors implement a DSL and a code

generator written in the Haskell programming language. Authors implement a

pluggable architecture for the code generator, which generates Swagger, Python, and

Java source code. The aim of this DSL is to support the definition and generation of

REST services for a proprietary platform designed and used by the Brazilian Army.

Concerning the second work found [17], authors develop a model-driven

software tool that supports specification and code generation related to the REST

software architecture style under a distributed system. Authors used the Xtext and

Sirius frameworks for developing the textual and graphical concrete syntax,

respectively. Authors implement a series of code generators with the Xtend

programming language. The generated code is able to run under a distributed or cloud

software architecture, so it uses libraries such as Zuul, Eureka, Turbine, Hystrics and

the Spring Cloud framework. The defined REST APIs comprise basic CRUD

operations over the defined entities.

Finally, another related work is reported in [18], although authors do not specify

a DSL, they use a domain model (Ecore model) as starting point for generating REST

APIs in the Java programming language. Authors also map CRUD operations from

 5

the specified entities to REST APIs. The generated code is aimed to be deployed in a

Java EE application server, so it uses technologies such as JAXB, JPA, EJB, CDI and

JAX-RS.

3. Spring Boot REST application architecture

Spring Boot has gained popularity among Java developers. It is used as an alternative

to deploy software products in application servers. It is considered the de facto

standard for microservice development [12]. Spring Boot has a built-in server by

which the process of implementing a REST application is significantly simplified

[22]. A Spring Boot application that exposes REST resources from CRUD operations

can be modelled as the one shown in Fig. 1.

Fig. 1. Example of a Spring Boot application that exposes REST resources from CRUD operations

A Spring Boot application usually is configured as a Maven project, the

pom.xml file contains the dependencies needed for building and running this kind of

applications. The application properties file contains configuration properties such as

the persistence storage used (database), web server port, among other settings. A

main class is used as the starting point for running the application (in this example,

DemoApplication).

As shown in Fig. 1, an entity class is modelled to be an object wrapper for a

database table (Order class), so its attributes are mapped to columns on the database

table. It is done by using an object-relational mapping framework like Hibernate. A

repository interface is used to access CRUD operations. In this case, OrderRepository

extends from the JpaRepository interface, which, among other functionalities,

provides CRUD operations. A service class is used to wrap the repository interface;

as shown Fig. 1, the class OrderService wraps the CRUD operations exposed by the

repository. Finally, a controller class contains the code used for exposing CRUD

operations as resources (endpoints); in this case five resources are exposed, all related

to the methods: getOrderById, getAll, createOrder, updateOrder, and

deleteOrderById. The Tomcat HTTP web server is used for exposing the

implemented resources.

 6

4. Proposed DSL

CRUDyLeaf was developed through the following proposed stages: domain

immersion, golden application implementation, syntax definition, meta model

generation, code generator implementation, deployment, and refinement. These

stages are explained below.

4.1. Domain immersion

This stage consists in learning about the domain in which the DSL will be built. In

our case, we examined the Spring Boot framework, particularly how typical REST

applications with CRUD operations are implemented. A series of exercises were

coded in order to gain more understanding of this domain.

4.2. Golden application implementation

Once immersed in the domain of interest, we implemented a Spring Boot application

that exposes CRUD operations as REST resources. This application was used as a

golden template in order to derive the syntax for the DSL, this golden application is

also used as reference for implementing the code generator.

4.3. Syntax definition

Fig. 2. Concrete syntax excerpt of the CRUDyLeaf DSL

With a primitive version of the syntax, in this stage we refined and finished the

concrete syntax and built the DSL. We implemented it using Xtext [13]. Xtext is a

powerful framework for building language workbenches for textual DSLs. Xtext only

requires specifying a grammar file. With this syntax file, Xtext defines the language

and creates the required infrastructure such as the parser, linker, type checker as well

includes an editor for the Eclipse IDE. Fig. 2 shows an excerpt of the defined concrete

syntax.

4.4. Meta model generation

The concrete syntax serves as an input for generating the semantic model (meta

model). Among the infrastructure generated by Xtext, an Ecore model is generated.

 7

Fig. 3. Ecore meta model excerpt of the CRUDyLeaf DSL

It represents the Abstract Syntax Tree (AST). This Ecore model can be used to

perform Model to Text (M2T) transformations, i.e., generate source code from the

model. This stage is automatically conducted in the Eclipse IDE by running the Xtext

artifacts generation function. Fig. 3 shows the Ecore model derived from the concrete

syntax (also available at http://osgg.net/crudyleaf/crudyleaf_ecore.png).

http://osgg.net/crudyleaf/crudyleaf_ecore.png

 8

4.5. Code generator implementation

We used the Xtend language [14] in order to write the code generator from the

proposed DSL. Xtend is a statically-typed programming language that was initially

released with Xtext. We wrote different code templates in order to automatically

generate all the Spring Boot Java files that were necessary. Fig. 4 shows an excerpt

of the Xtend language used for implementing the code generator. This excerpt is

related to the service classes generation.

Fig. 4. Xtend code excerpt of the implemented code generator

4.6. Deployment

The aim of this stage is to make available the developed DSL in order to be used by

other people. In our case, we generated an eclipse plugin and published it on the

Eclipse Marketplace. This allows anyone interested in this DSL to install it in his/her

Eclipse IDE. Fig. 5 shows a screenshot of the published DSL in the Eclipse

Marketplace.

Fig. 5. Published DSL in the Eclipse Marketplace

(https://marketplace.eclipse.org/content/crudyleaf)

https://marketplace.eclipse/

 9

4.7. Refinement

Building a DSL is a cyclical process, although the previous stages seem to be

sequential, stages can be overlapped or jointly addressed. For example, when we

worked on the golden application we also started to identify the grammar of the

language. We also worked interchangeably between the code generator and the

syntax definition. Finally, once the DSL was deployed onto the Eclipse Marketplace,

some issues were addressed mainly in the code generator.

5. Exemplification and evaluation of the proposed DSL

In this section we exemplify the use of the proposed DSL through a scenario. Let

assume we want to expose some REST endpoints from CRUD operations belonging

to two entities: Car and Order. This scenario can be specified with the proposed DSL

as shown in Fig. 6.

Fig. 6. Grammar example of CRUDyLeaf

This DSL is composed of 22 reserved words which are: group, artifact,

api_prefix, timezone, entities, entity, operations, r, c, u, d, pk, filter, auto, UUID,

Long, Integer, Double, Boolean, String, Date, and Time.

As shown in Fig. 6, the DSL will produce the corresponding Spring Boot Java

files, such as: Car.java (entity), CarRepository.java, CarService.java,

CarController.java, Order.java (entity), OrderRepository.java, OrderService.java,

OrderController.java, also the main file DemoAppApplication.java and the Maven

pom file pom.xml. All the source code from this DSL is generated under the src-gen

folder. The group and artifact reserved words are used to specify the package and

application name, respectively. The api_prefix reserved word is used to specify the

location of the exposed REST resources (APIs). The CRUD operations specified in

the entities are exposed as REST services in the CarController.java and

 10

OrderController.java classes. In this case the four operations were specified (at least

a “Read” operation should be defined).

By default, the H2 database is used to persist the entities, but it can be changed

to other databases by editing the application.properties file. The source code

generated is structured as a Maven project, which can be run in an IDE or through a

console using a command prompt. Fig. 7 shows an excerpt of the code generated by

the DSL, in this case the code related to the OrderService.java file.

The data types supported for this DSL are: Long, UUID, String, Integer, Double,

Boolean, Date and Time. The first property of an entity is specified with the “pk”

reserved word after defining the datatype. This keyword is used to specify the primary

key of its corresponding database table column. This first property should be defined

as either a Long or UUID data type.

Fig. 7. Excerpt of the code generated by CRUDyLeaf

As shown in Fig. 7, searches in the database can be enabled by using the “filter”

keyword. In this sense, an entity property can be filtered as long as String or Date

datatypes are defined in a given entity property. When this keyword is specified, the

DSL generates the corresponding endpoints (controllers) for searching in the

corresponding database table columns. In this case, the DSL generates the necessary

code for searching in the “name” column of the Car database table (which is mapped

to the “name” property of the Car entity), and also generates the code for searching

in the “orderDate” column of the Order database table.

Date and Time data types can automatically generate values each time a

successful post is requested, just specifying the reserved word “auto” after the Date

or Time datatypes, as shown in Fig. 7. In this example, each time a successful post is

requested from the corresponding API REST, the current date from the system is

retrieved and stored in the database.

 11

Concerning the time zone, it is possible to specify any available time zones from

the TimeZone.getAvailableIDs() method, so the web server will use the specified

time zone.

The endpoints generated are also documented using OpenAPI and Swagger

[15]. This documentation is available once the generated Spring Boot application is

run. Fig. 8 shows a screenshot with the information of the exposed endpoints. The

documented endpoints can also be tested by the user.

Fig. 8. Example of Swagger documented endpoints generated by the proposed DSL

5.1. Evaluation

Once exemplified the use of this DSL, following we describe the conducted

evaluation. With the grammar example previously discussed (see Fig. 6), 578 Lines

Of Code (LOC) were automatically generated from the 18 LOC written in this DSL.

Table 1 shows the accounting of LOC of every file automatically generated by this

DSL. For this example, the yielded automation rate was 32.1 LOC for each LOC

written in this DSL (32:1).

Table 1. Accounting of the source code generated from 18 LOC written in the

CRUDyLeaf DSL

Generated file LOC

pom.xml 58

application.properties 10

DemoApplication.java 47

DemoApplicationTests.java 19

Car.java 36

CarController.java 63

CarRepository.java 22

CarService.java 68

Order.java 66

OrderController.java 66

OrderRepository.java 30

OrderService.java 70

RecordNotFoundException.java 23

Total 578

 12

With regard to productivity measured as the LOC per 1 h, we have found

individual productivity rates of 20 LOC per 1 h [19], 13.3 LOC per 1 h [20], and 10

LOC per 1 h [21] reported in the literature. Averaging these three measurements, we

assume an average productivity of 14.4 LOC per 1 h for our DSL assessment. The

578 LOC generated by the DSL will require 40.13 hours, approximately five full

workdays. On average, the proposed DSL spent two seconds generating the source

code files shown in Table 1, for this example, a yield of 963,333 LOC per 1 h was

estimated.

6. Discussion and conclusions

Concerning related works, none of the previously mentioned proposals are currently

available, so it was not possible to use or test them. The work reported in [17] is the

one more closely related with our proposed DSL, however since our DSL is related

with the Spring Boot framework, the concrete syntax is simpler than the one reported

in [17]. Having a simple syntax helps to improve the understanding of this kind of

Spring Boot applications to persons that start to study this technology. On the other

hand, for all those with more knowledge of the Spring Boot framework, our proposed

DSL speeds up the development of this kind of applications.

The proposed DSL fits well in current software industry approaches such as

DevOps in which software products are delivered quickly and with high reliability

[23]. The REST resources generated by CRUDyLeaf are automatically coded as a

Spring Boot application (structured as a Maven project), so the resulting application

can be automatically built and deployed in a fraction of time, in line with the DevOps

approach [24].

In this work we have presented CRUDyLeaf, an external text-based DSL

that can be used for automating the building of Spring Boot REST resources

by defining entities and CRUD persistent storage operations. The example

described in the present work yielded an automation rate of 32.1 LOC for each LOC

written in this DSL (32:1), i.e., 578 LOC were automatically generated by coding 18

LOC through this DSL. The main contributions of the presented work are twofold:

 The development and deployment (available in the Eclipse Marketplace) of

a DSL that is speeds up the development of Spring Boot REST resources from entity

CRUD operations.

 An exemplified and proposed DSL development process conformed of seven

stages (domain immersion, golden application implementation, syntax definition,

meta model generation, code generator implementation, deployment, and refinement)

where this process can be used as reference for building a DSL.

As future work, we plan to implement a validator in order to address better the

error markers shown in the IDE. This component will be active in the background

while the user of the proposed DSL is typing in the IDE editor, so the user will get

an immediate feedback of the typed syntax.

 13

R e f e r e n c e s

1. A l v e s, A., P. V e n t u r a, A. R o d r i g u e s. LegalLanguage: A Domain-Specific Language for

Legal Contexts. – In: D. Aveiro, G. Guizzardi, J. Borbinha, Eds. Advances in Enterprise

Engineering XIII. EEWC 2019, Lecture Notes in Business Information Processing, Vol. 374,

2020, pp. 33-51.

2. S k o t n i c a, M., R. P e r g l. Das Contract – A Visual Domain Specific Language for Modeling

Blockchain Smart Contracts. – In: D. Aveiro, G. Guizzardi, J. Borbinha, Eds. Advances in

Enterprise Engineering XIII. EEWC 2019. Lecture Notes in Business Information Processing,

Vol. 374, 2020, pp. 149-166.

3. C o e l h o, L. P., R. A l v e s, P. M o n t e i r o, J. H u e r t a-C e p a s, A. T. F r e i t a s, P. B o r k.

NG-Meta-Profiler: Fast Processing of Metagenomes Using NGLess, a Domain-Specific

Language. – Microbiome, Vol. 7, 2019, No 84, pp. 1-10.

4. M a s c h o t t a, R., A. W i c h m a n n, A. Z i m m e r m a n n, K. G r u b e r. Integrated Automotive

Requirements Engineering with a SysML-Based Domain-Specific Language. – In: Proc. of

IEEE International Conference on Mechatronics (ICM), IEEE, 2019.

5. L o u b o u t i n, M., M. L a n g e, F. L u p o r i n i, N. K u k r e j a, P. W i t t e, F. H e r r m a n n,

P. V e l e s k o, G. G o r m a n. Devito (V3.1.0): An Embedded Domain-Specific Language for

Finite Differences and Geophysical Exploration. – Geoscientific Model Development, Vol. 12,

2019, No 3, pp. 1165-1187.

6. C a r a m u j o, J., A. R o d r i g u e s, S. M o n f a r e d, A. R i b e i r o, P. C a l a d o, T. B r e a u x.

RSL-IL4Privacy: A Domain-Specific Language for the Rigorous Specification of Privacy

Policies. – Requirements Engineering, Vol. 24, 2019, No 1, pp. 1-26.

7. M o n j a r d i m, G. E., A. R o d r i g u e s, F. M. V a r e j ã o, V. E. S i l v a, M. P. R i b e i r o.

A Domain-Specific Language for Fault Diagnosis in Electrical Submersible Pumps. – In: Proc.

of 16th International Conference on Industrial Informatics (INDIN), IEEE, 2018.

8. E a r l, C., M. M i g h t, A. B a g u s e t t y, J. C. S u t h e r l a n d. Nebo: An Efficient, Parallel, and

Portable Domain-Specific Language for Numerically Solving Partial Differential Equations. –

Journal of Systems and Software, Vol. 125, 2017, pp. 389-400.

9. V o e l t e r, M. DSL Engineering: Designing, Implementing and Using Domain-Specific Languages.

Create Space Independent Publishing Platform, 2013.

10. N e g m, E., S. M a k a d y, A. S a l a h. Survey on Domain Specific Languages Implementation

Aspects. – International Journal of Advanced Computer Science and Applications, Vol. 10,

2019, No 11, pp. 624-633.

11. F o w l e r, M. Domain-Specific Languages. Addison-Wesley Professional, 2010.

12. JetBrains (last accessed 13.02.2020).

https://www.jetbrains.com/lp/devecosystem-2019/java/
13. Xtext (last accessed 02.02.2020).

https://www.eclipse.org/Xtext/
14. Xtend (last accessed 09.02.2020).

https://www.eclipse.org/xtend/
15. Swagger (last accessed 22.02.2020).

https://swagger.io/docs/specification/about/
16. L i m a, L., R. B o n i f á c i o, E. C a n e d o. NeoIDL: A Domain Specific Language for Specifying

REST Contracts Detailed Design and Extended Evaluation. – International Journal of Software

Engineering and Knowledge Engineering, Vol. 25, 2015, No 9-10, pp. 1653-1675.

17. T e r z i ć, B., V. D i m i t r i e s k i, S. K o r d i ć, G. M i l o s a v l j e v i ć, I. L u k o v i ć.

Development and Evaluation of MicroBuilder: A Model-Driven Tool for the Specification of

REST Microservice Software Architectures. – Enterprise Information Systems, Vol. 12, 2018,

No 8-9, pp. 1034-1057.

18. E d-D o u i b i, H., J. L. I z q u i e r d o, A. G ó m e z, M. T i s i, J. C a b o t. EMF-REST: Generation

of RESTful APIs from Models. – In: Proc. of Symposium on Applied Computing (SAC’16),

2016.

19. R o y, D. M. The Personal Software Process: Downscaling the Factory. – In: Proc. of 19th Annual

Software Engineering Workshop, 1994.

 14

20. G w a k, T., Y. J a n g. An Empirical Study on SW Metrics for Embedded System. – In: Q. Wang,

D. Pfahl, D. M. Raffo, P. Wernick, Eds. Software Process Change. SPW 2006. Lecture Notes

in Computer Science, Vol. 3966, 2006, pp. 302-313.

21. B a h e t i, P., L. W i l l i a m s, E. G e h r i n g e r. Distributed Pair Programming: Empirical Studies

and Supporting Environments. – Technical Report, TR02-010, Univ. of North Carolina at

Chapel Hill, 2002, pp. 1-11.

22. G a j e w s k i, M., W. Z a b I e r o w s k i. Analysis and Comparison of the Spring Framework and

Play Framework Performance, Used to Create Web Applications in Java. – In: Proc. of XV

International Conference on the Perspective Technologies and Methods in MEMS Design

(MEMSTECH’19), IEEE, 2019.

23. A n g a r a, J., S. P r a s a d, G. S r i d e v i. DevOps Project Management Tools for Sprint Planning,

Estimation and Execution Maturity. – Cybernetics and Information Technologies, Vol. 20,

No 2, 2020, pp. 79-92.

24. E b e r t, C., G. G a l l a r d o, J. H e r n a n t e s, N. S e r r a n o. DevOps. – IEEE Software, Vol. 33,

2016, No 3, pp. 94-100.

Received: 27.03.2020; Second Version: 07.07.2020; Accepted: 22.07.2020

