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Abstract: The paper makes analytical overviews of the Markowitz portfolio and the 

Capital Asset Pricing models and motivates the advances of the Black-Litterman (BL) 

one. This overview implies that for a small set of assets the BL model needs the 

characteristics of a specific market point, which cannot be taken from a global market 

index. The paper derives analytic relations for the new specific market point with 

analytical approximation of the efficient frontier. The BL model insists also expert 

views, which influence the portfolio solution. The paper derives formalization of the 

expert views from the difference between the evaluated implied returns and historical 

mean assets returns. Such form of expert views makes modifications of the BL model. 

This allows comparisons between Markowitz (MV) and BL portfolio performance. 

Benefits of this research are demonstrated with market data and comparison of the 

MV and BL portfolio results.   

Keywords: Size Portfolio optimization, mean-variance portfolio model, Black-

Litterman portfolio model, active portfolio management, decision making.  

1. Introduction 

In the portfolio practice two main strategies for the portfolio management are applied 

‒ active and passive. The passive strategy follows the market behavior. This strategy 

does not apply fundamental or technical analysis. As a result, the passive portfolio 

cannot outperform a chosen investment benchmark. The portfolio has low turnover 

in common, but good long-term worth [28]. The active strategy aims outperforming 

the market and achieving better returns by making changes of the content of the 

portfolio, involving quantitative analysis of the assets characteristic.  

The goal of this paper is to study the peculiarities of the Black-Litterman (BL) 

portfolio model and to derive an algorithm for its application in active investor’s 

strategy. The BL model is strongly influenced by the values and types of additional 

expert information and forecasts. Thus, different set of experts will origin different 
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solutions of the portfolio model. These features of the BL portfolio model do not 

allow its results to be compared with the classical mean-variance portfolio problem 

of Markowitz. The present paper applies an approach to substitute the expert forecasts 

with additional data, given by the historical trends of the assets returns. Thus, 

applying the BL portfolio problem but using the same historical information for the 

mean-variance problem will have common basis for comparison of their portfolio 

solutions. The paper suggests new definition of the expert views from real historical 

data without including subjective forecasts of the experts. An algorithm for active 

portfolio management with the BL model is derived. The definition of the subjective 

view from the objective historical data of returns is presented. This modified BL 

portfolio model is compared with the classical mean variance one. 

An active policy with low number of assets of technological companies is 

presented, using actual data from the stock exchange. The results achieved by the 

active portfolio management give preference to the modified BL portfolio model. 

2. Analytical overview of formal relations, applied in the BL portfolio  

The launch of Modern Portfolio Theory (MPT) is assumed to be one of the most 

important achievements in financial engineering. This theory gives solutions for 

diversification of investment risk and a concept for optimization of portfolio return. 

The goal of the portfolio optimization is to invest now and to achieve maximal 

portfolio return at the end of the investment horizon. Thus, the portfolio theory has 

intrinsic needs to forecast the assets characteristics. Due to the stochastic nature of 

the assets’ returns, the MPT simultaneously takes into consideration both portfolio 

return and portfolio risk. Thus, the portfolio theory performs maximization of return 

by minimizing the risk. The asset returns are formalized as mean of return for a 

predefined historical period and the risk is quantitatively assessed by the volatility of 

the historical returns. That is the reason the classical portfolio optimization to use the 

notation Mean Variance (MV) optimization. 

2.1. Classical mean variance portfolio problem 

The Markowitz classical portfolio problem has the following analytical description 

[21] 

(1)   max
𝐰

[
𝐄T𝐰

𝐰T𝚺𝐰 ≤ 𝜎max
2 ]   or   min

𝐰
[

𝐰T𝚺𝐰
𝐄T𝐰 ≥ 𝐸min

],  

where ET=(E1, …, EN )    are the mean returns of the assets;  

N – number of assets in the portfolio;  

𝚺 – the covariance matrix between the asset returns, which is the quantitative 

assessment of the risk  and the correlations between the returns of the assets; 

𝐰T=(w1,…, wN), wi – the weight or relative part of the investment, allocated to 

asset i as a solution of the portfolio problem; 

𝜎max
2  – the maximal allowed risk for the portfolio;        

𝐸min – the minimal requested return by the portfolio. 

The input data ET, 𝚺   for the portfolio optimization are evaluated using historical 

data of asset returns. Because the returns are stochastic in nature, they strongly 
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influence the input data for the optimization and different factor models are used for 

their estimation. This classical MV problem suffers from the sensitivity of the 

portfolio solutions due to the accuracy of input data   ET, 𝚺. The stochastic nature of 

the input data results in unintuitive problem solutions. As a result, many investors 

consider the MV problem too impractical to be used for real investments. 

Problems (1) currently are integrated in a common problem 

(2)    max
w

[𝐄T𝐰 − 𝜆𝐰T𝚺𝐰],      𝐰T|𝟏| = 1, 𝐰T ≥ 0, 

where 𝜆 is the risk aversion coefficient. It takes values [0, ∞]. For 𝜆 = 0, the investor 

maximizes only the return, for 𝜆 = ∞ he minimizes the portfolio risk.  

When problem (2) is solved for different values of  𝜆, the solutions give points 

in the Risk/Return space, which define the “efficient frontier” of portfolios. The MPT 

requires that the user portfolio plot along this curve. 

The MV optimization problem has been complicated and extended to advance 

its utilization in practice. Following [11, 12, 16], the extension of (2) includes 

inclusion of transactional costs for the portfolio, adding additional constraints 

to (2), incorporation of several periods for the investment policy, solving 

cardinality problem of investment resources.  
Despite including additional analytical constraints to the portfolio problem (2), 

the general form of the problem is kept as a mathematical programming one. 

2.2. Formal relations from Capital Asset Pricing Model (CAPM) 

CAPM derived new formal relations in the portfolio theory. It introduces a special 

portfolio, named Market one. New linear relations are introduced, which formalize 

additional links between the portfolio parameters and the market characteristics in 

equilibrium [25]: Capital Market Line (CML); Security Market Line (SML); 

Characteristic Line (HL). 

The CML is a linear relation between the mean portfolio return 𝐸𝑝, and portfolio 

risk 𝜎𝑝 (standard deviation) for the particular market (𝐸𝑀, 𝜎𝑀) and taking into 

account the risk free return 𝑟𝑓,  

(3)   𝐸𝑝 =  𝑟𝑓 +  
𝐸𝑀− 𝑟𝑓

𝜎𝑀
𝜎𝑝. 

The geometrical interpretation of the CML is given in Fig. 1. The CML passes 

through the risk free point (0, 𝑟𝑓) and the market one (𝐸𝑀, 𝜎𝑀). The market point 

(𝐸𝑀, 𝜎𝑀) is the tangent one between the CML and the “efficient frontier”.  
 

 
Fig. 1. Geometrical interpretation of CML 
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The CML gives information about the possible portfolio characteristics (Risk 

and Return) in comparison to the market portfolio. In the case of having a portfolio 

return bigger than the market one, the investor needs to assume more risk, which is 

not acceptable in real investments. 

The SML provides additional relation between the mean return Ei of particular 

asset i and the market portfolio 

(4)   𝐸𝑖 =  𝑟𝑓 + (𝐸𝑀 − 𝑟𝑓)𝛽𝑖. 

The coefficient 𝛽𝑖 determines the relation between the market return 𝐸𝑀 and the 

individual asset return 𝐸𝑖. The value of the coefficient 𝛽𝑖 is  

(5) 𝛽𝑖 =  
cov(𝑖,   𝑀)

𝜎𝑀
2  . 

It is a measure of the covariance cov(i, M) between the i-th asset and the market. 

The SML is useful to forecast the return Ei when the market return EM changes to a 

new value. The SML allows investors to follow only the market portfolio and to 

assess many assets Ei, i=1, …, N, is the number of assets. This relation also minimizes 

the computational efforts to follow N assets for the portfolio management.  

The cHaracteristic Line (HL) gives additional analytical relation between the 

current market return RM  and the current return Ri of asset i  

𝑅𝑖 =  𝑟𝑓 +   𝛽𝑖(𝑅𝑀 − 𝑟𝑓). 

Relation HL simplifies the forecast of the individual asset returns Ri. One can 

assess the market actual return RM and this value in a linier way defines the actual 

return Ri of asset i. The HL uses also the well-known “coefficient beta”, 𝛽𝑖,  

i = 1, …, N, from (5). The CAPM derives and applies in portfolio management these 

three relations: CML, SML, HL. These lines provide linear relations between the 

portfolio characteristics and the market ones. But these relations are new, additional 

analytical ones to the MV portfolio model. The CAPM gives useful tools to estimate 

portfolio characteristics, to assess possible portfolio returns, and to forecast changes 

in portfolio behavior. 

New analytical relations have been derived by the Black-Litterman (BL) 

portfolio model. The idea behind this model is the estimation and forecasting the 

assets parameters by integrating two sources of information: the historical behavior 

of the assets returns and subjective forecasts of experts [1, 6, 15]. Hence, the portfolio 

parameters for the mean returns Ei, i = 1, …, N, and the covariance matrix is 

influenced by subjective expert views. Such integration of real history and subjective 

views results in portfolios, which do not contain sharp cut of types of securities, 

which takes place in the Markowitz portfolios. The BL model faces criticism of its 

efficiency [23] because the different sets of views will produce different portfolio 

solutions, which do not have common bases for comparisons. However, the structure 

of the portfolio, given by the BL model is more acceptable by the investors due to the 

higher level of diversification, which it gives. The analytical definition of the BL 

model contains several relations, which are used in the classical MV portfolio 

optimization. Present paper makes an overview of the BL model, which has been 

used for active portfolio management.  

 



 34 

2.3. Definition of “implied returns” in Black-Litterman Analytical Model 

The BL model introduces new portfolio parameters, named “implied returns”,  

[22, 24]. They take into consideration the noises in the market, which influence the 

asset returns. The BL model considers the difference between the “implied returns” 

and the real values of the returns.  

2.3.1. Evaluation of the “implied returns” 

The “implied returns” Пi, i = 1, …, N, are evaluated from SML analytical relation. 

Following (4), the SML has the following analytical description  

(6)   𝐸𝑖 −  𝑟𝑓 = (𝐸𝑀 − 𝑟𝑓)𝛽𝑖   where     𝛽𝑖 =  
cov(𝑖,𝑀)

𝜎𝑀
2  . 

The left side of (6) defines the “excess implied return” П𝑖
∗ =  𝐸𝑀 − 𝑟𝑓, thus  

(7)   П𝑖
∗ =  

cov(𝑖,𝑀)

𝜎𝑀
2 (𝐸𝑀 −  𝑟𝑓).  

The actual market return RM is a linear combination between the market 

capitalization weights 𝑤𝑖
∗ of all assets, i = 1, …, N, and their actual returns Ri,  

(8)   𝑅𝑀 = ∑ 𝑅𝑖𝑤𝑖
∗𝑁

𝑖=1 .  

The same formal relation takes place for the mean values of the asset returns  

(9)   𝐸𝑀 = ∑ 𝐸𝑖𝑤𝑖
∗𝑁

𝑖=1 . 

Substituting (8) and (9) in (6) for the coefficient  𝛽𝑖 it follows: 

cov(𝑅𝑖, 𝑅𝑀) =
𝟏

𝒏−𝟏
∑ (𝑅𝒊

(𝒌)𝒏
𝒌=𝟏 − 𝐸𝒊) ∑ (𝑅𝑗

(𝑘)𝑁
𝑗=1 − 𝐸𝑗)𝑤𝑗

∗, 

where n are the number of data in the historical period. Changing the order of 

summation, it follows 

cov(𝑅𝑖, 𝑅𝑀) = ∑
1

𝑛−1
∑ (𝑅𝑖

(𝑘)
− 𝐸𝑖)(𝑅𝑗

(𝑘)
−𝑁

𝑘=1 𝐸𝑗)𝑤𝑗
∗𝑁

𝑗=1 . 

The internal sum gives the co-variation between assets i and j or  

(10)   cov(𝑅𝑖, 𝑅𝑀) = ∑ cov(𝑅𝑖, 𝑅𝑗)𝑤𝑗
∗𝑁

𝑗=1 .  

Substituting (10) in (7), it follows 

(11)   П𝑖
∗ =  

𝐸𝑀− 𝑟𝑓

𝜎𝑀
2  ∑ cov(𝑅𝑖, 𝑅𝑗)𝑤𝑗

∗𝑁
j=1   or in matrix form П*=  𝜆𝐂𝐎𝐕(. )𝑤∗, 

where  λ=
𝐸𝑀−𝑟𝑓

𝜎𝑀
2   is a parameter named “risk aversion” or market price of risk; 

𝐂𝐎𝐕(. )= |
cov(𝑅1, 𝑅1) ⋯ cov(𝑅1, 𝑅𝑁)

⋱
cov(𝑅𝑁, 𝑅1) ⋯ cov(𝑅𝑁 , 𝑅𝑁)

| is N×N matrix. 

The BL model applies the notation 𝚺 for the covariance matrix, 𝚺=COV(.). Finally, 

the “implied returns” П are 

(12)   П = 0П* + rf . 

Relations (11) and (12) do not require explicit constraints for the market 

capitalization weights w*. But at the market point the weights always satisfy  

(13)   ∑ 𝑤𝑖
∗ = 1𝑁

𝑖=1 ,  

where 𝑤𝑖
∗ gives the relative part of the investment, allocated to asset i.  
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2.3.2. Alternative way of definition of implied returns 

Another way for deriving relation (11), which is intensively presented in references 

[16, 17, 27], is by implementing the “inverse optimization” procedure. The BL model 

for this case starts from the assumption that the portfolio has to maximize the return 

and minimize the risk. These requirements are valid also for the market portfolio and 

using the goal function from (2) it follows 

(14)   max
𝐰𝑀

{𝐰𝑀
T П∗ −  0.5𝜆𝐰𝑀

T 𝚺𝐰𝑀}. 

This problem lacks additional constraints, because at the market point, relation 

(13) is assumed to hold in implicit way. Problem (14) is an unconstrained 

optimization problem and its solution can be found from the first derivative  

(15)    
𝑑

𝑑𝑤
(𝐰𝑀

T П∗ −  0.5𝜆𝐰𝑀
T 𝚺𝐰𝑀) = 𝟎 or П∗ −  𝜆𝚺𝐰𝑀 = 𝟎,  

where all parameters must be known: λ is the risk aversion coefficient; 𝚺 is the N×N 

covariance matrix, evaluated for the historical period with data 

𝑅𝑖, 𝐸𝑖 , 𝑖 = 1, … , 𝑁; 𝐰𝑀  is the market capitalization weights. 

The parameter λ has to be estimated according to the available data for 𝚺, 

𝐰𝑀 and market characteristics 𝐸𝑀 , 𝜎𝑀
2 .  

2.3.3. Assessment of λ 

Using (15) both sides are multiplied from the left by the vector 𝐰𝑀
T   

(16)   𝐰𝑀
T  П = 𝜆𝐰𝑀

T  𝚺𝐰𝑀.   

The left side of (16) gives the market excess return EM – rf. The right side defines 

the market portfolio risk, 𝐰𝑀
T 𝚺𝐰𝑀 or 

(17)   𝐸𝑀 – 𝑟𝑓 =  𝜆𝜎𝑀
2 . 

From (17) and the market portfolio characteristics it follows  

(18)   𝜆 =  
𝐸𝑀− 𝑟𝑓

𝜎𝑀
2 , 

which gives numerical value to the risk aversion coefficient for the market portfolio. 

Substituting (18) in (15) the “implied excess returns” are 

(19)   П∗ =  𝜆(𝐸𝑀 , 𝜎𝑀
2 , 𝑟𝑓)𝚺(𝑅𝑖 , 𝑖 = 1, … , 𝑁, 𝑡 ∈ (0, 𝑇)) =

𝐸𝑀− 𝑟𝑓

𝜎𝑀
2  𝚺𝐰𝑀, 

where 𝑡 ∈ (0, 𝑇) is the historical period, over which the average returns Ei  and the 

covariance matrix 𝚺 are calculated. Respectively, the vector of “excess returns” is 

П =  𝑟𝑓 +  П∗, which has to be used in the BL model. 

2.4. Formal presentation of BL model relations 

The BL model states that the vector of mean returns of the securities EBL is influenced 

from three components: the “implied returns“ П; the market noise 𝛆; the subjective 

views of experts about the values of future asset returns.  

The analytical relation, which considers the “implied returns” and the market 

noise, is in linear form 

(20)   П =  𝐄BL +  𝛆, 𝐄BL =  |

𝐸BL,1

⋮
𝐸BL,𝑁

|. 
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The vector EBL is unknown and it has to be defined by minimizing the influence 

of the noise 𝛆 and to be near to the value of the vector of “implied returns” П. If noise 

is missing, EBL will be equal to the “implied returns” П. The components of noise 

𝛆 =  |

𝜀1

⋮
𝜀𝑁

|  are assumed to be independent, with normal distribution and zero mean, 

and volatility, proportional to the volatilities of the portfolio assets 
(21)   𝛆~𝐍(0, 𝜏𝚺). 

These assumptions allow only the diagonal components of the co-variation 

matrix to be used. The value of  𝜏 < 1 is a scaling parameter and it defines that the 

volatility of the noise 𝛆 has a proportional value to the assets’ volatility.  

The formalization of the subjective views is given as 
(22)   𝐐 = 𝐏 𝐄BL +  𝛈, 

where P is a matrix, that identifies the assets, involved in the different views, Q is a 

vector with the quantitative assessments of the subject views about the changes of the 

asset returns, 𝛈 is a vector noise with normal distribution, which represent the risk of 

the subjective views, 𝛈 ~𝐍(0, 𝛀). The volatility of 𝛈 is given by the matrix Ω. It is 

assumed that the subjective views are k numbers and they are uncorrelated. Hence, 

the matrix Ω is a diagonal one with k×k size. Each diagonal component 𝛀𝑖,𝑖 

numerically represents the volatility of the subjective view i. Taking into 

consideration (21) and (22), the unknown mean values 𝐄BL have to provide close 

solution to the stochastic system 

(23)   П = 𝐈𝐄BL + 𝛆,  
𝐐 = 𝐏𝐄BL + 𝛈. 

To simplify the next relations, aggregate notations are used 
𝐘 = 𝐗𝐄BL +   𝛙, 

where 

𝐘 = |
П

𝐐
|, 𝐗 = |

𝐈
𝐏

|, 𝛙 = |
𝛆
𝛈|, �̅� = |

𝜏𝚺 0
0 𝛀

|. 

Having a set of values about X and Y, it is needed to find the linear regression 

for 𝐄BL, which gives maximal approximates for (23). To find 𝐄BL according to the 

general least square method the Mahalonobis distance is minimized 

(24)    𝐄BL
min ≡ arg {min

𝐄BL

 [(𝐘 − 𝐗𝐄BL]T 𝛙−𝟏[(𝐘 − 𝐗𝐄BL]}. 

The unconstrained minimization of (24) gives an analytical solution  

(25)   𝐄BL
min = (𝐗T𝛙−1 𝐗)−1 𝐗T  𝛙−1 Y, 

and substituting the notations for X, Y,  ψ̅ the main relations in BL model follow 

(26)   𝐄BL = [(𝜏𝚺)−1 + 𝐏T𝛀−1𝐏]−𝟏[(𝜏𝚺)−1П + 𝐏T𝛀−1𝐐],  
and volatility  Vol(𝐄BL) = 𝚫BL = [(𝜏𝚺)−1 + 𝐏T𝛀−1𝐏]−1. 

The final BL vector of mean returns and the final covariance matrix are 

(27)   𝐄BL
final =  𝐄BL + 𝐫f      and    𝚺BL

final =  𝚺 + 𝚫BL. 

Relations (27) give new solutions 𝐰BL of the portfolio problem in comparison with 

the MV one, because (2) is solved with new data 𝐄BL
final and   𝚺BL

final instead of E  

and  𝚺: 
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(28)   max
𝐰

[𝐄BL
final T𝐰 − 𝜆𝐰T𝚺BL

final𝐰],  𝐰T|1| = 1, 𝐰T ≥ 0.  

The value 𝜆 of the risk aversion coefficient is different for each investor. In the 

case of multiple solutions of (28) by changing λ∈ (0, ∞), points of the new “efficient 

frontier” are found. The solution 𝐰opt will give new structure of the portfolio in 

comparison to the MV problem (2). The solution 𝐰opt does not have sharp cut of 

values, which takes place in Markowitz portfolio.  

2.5. Alternative descriptions of the formal relations in BL model 

The main BL relations (26) can be presented also in less complicated forms.  

2.5.1. Alternative relations for 𝐄BL  

Starting with (26) a zero sum of the form  |
0
⋮
0

| =  𝐏T𝛀−1 𝐏 П − 𝐏T𝛀−1 𝐏 П is added, 

where P is k×N matrix,  𝛀−𝟏 is k×k matrix, П is N×1 vector. The analytical sequences 

of transformation follow: 

𝐄BL = [(𝜏𝚺)−1 + 𝐏T𝛀−1𝐏]−1[(𝜏𝚺)−1П

+ (𝐏T𝛀−1 𝐏 П − 𝐏T𝛀−1 𝐏 П) + 𝐏T𝛀−1𝐐]. 

Using the matrix equation 𝐀−1𝐁−1 = (𝐁 𝐀)−1, this gives 

(29)    𝐄𝐁𝐋 = П +  𝜏𝚺 𝐏(𝛀 + 𝐏 (𝜏𝚺)𝐏𝐓)−1(𝐐 − 𝐏П). 

Relation (29) is derived in [15, 20]. The value of vector  𝐄BL is named posterior 

estimate of unknown mean returns, П is prior estimate (implied returns). The 

posterior returns  𝐄BL will be equal to the prior returns П if expert views are lacking 

(zeros matrices P, Q).  

2.5.2. Alternative description of the BL increase of the covariance 𝚫BL 

The change of the covariance matrix 𝚺 in BL model is done with the additional matrix 

𝚫BL, analytically defined with (26). This relation can be elaborated, applying 

the Woodburg’s matrix identity formulae  
(30)   (A + UCV) –1 = A–1 – A–1U(C–1VA–1U–1) VA.  

Substituting the notations A = (𝜏𝚺)−1, U=PT, C=𝛀−1, V=P  the value of 𝚫BL 

becomes  

(31)   𝚫BL =  𝝉𝚺 − [𝐈 − 𝐏T(𝛀 + 𝐏 𝝉𝚺 𝐏T)−1 𝐏 𝝉𝚺]. 
Relation (31) analytically describes that the changes in the correlation matrix 𝚺 

results from the components of the expert views P and Ω. The covariance increase 

𝚫BL is mainly influenced by the volatility of the expert views Ω, not by the forecasts 

Q for the asset returns.  

2.5.3. Analysis of the influence of matrix Ω 

Matrix Ω influences the covariance matrix 𝚺  by the component 𝚫BL(Ω) 

The BL model assumes that the volatility of the views Ω is proportional to 𝜏𝚺 

or 

(32)   𝛀 = 𝐏( 𝜏𝚺) 𝐏T. 
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If (32) is substituted in (31), simple form of the covariance increase 𝚫BL is 

derived 

𝚫BL =  𝜏𝚺 − 𝜏𝚺𝐏T0.5(𝐏 𝜏𝚺  𝐏T)−1 𝐏 𝜏𝚺. 

Applying the matrix relation (AB)–1 = B–1A–1, it follows:  

(33)   𝚫BL =  𝜏𝚺 − 0.5𝜏𝚺 =  0.5 𝜏𝚺. 

Hence, relation (27) for the actual BL covariance matrix changes to the simple 

form 

𝚺BL
final =  𝚺 +  0.5 𝜏𝚺. 

2.5.4. Influence of matrix  Ω  to the vector of  BL mean returns  𝐄BL 

Using the definition of matrix 𝛀 from (32), the relation (29) about  𝐄BL becomes   

 𝐄BL = П + 0.5 𝜏𝚺 𝐏 ( 𝐏 𝜏𝚺 𝐏T)−1(𝐐 − 𝐏П). 

Applying the matrix equation (A B)–1 = B–1  A–1, it follows 

(34)    𝐄BL = П + 0.5𝐏−1(𝐐 − 𝐏П).  

Relations (33) and (34) present in simple forms the BL parameters 𝚫BL and  𝐄BL  

according to the usage of relation (32).  

Having new values for the asset returns 𝐄BL
final and covariance matrix 𝚺BL

final, the 

BL model defines another goal of the portfolio problem  

max
𝐰BL

[𝐄BL
final T𝐰BL − 𝜆𝐰BL

T  𝚺BL
final 𝐰BL]. 

The unconstrained solution of this optimization gives analytical solution for the 

asset weights as 

(35)  
𝑑

𝑑𝐰BL
 (… ) =  0 =  𝐄BL

final −  𝜆 𝚺BL
final 𝐰BL   or  𝐰BL =  ( 𝜆 𝚺BL

final)−1𝐄BL
final , 

where 𝜆 is the risk aversion coefficient of the investor. Solutions (35) can be 

practically used if short sales are eligible and components of 𝐰BL may have negative 

values. In practice the portfolio problem has constraints as problem (26).  

2.6. Classical definition of the expert views in the BL model (P(1) model) 

The BL relations (26) contain four additional parameters, formalizing the form of the 

expert views: 

P is a matrix, identifying the assets, included in the views; 

Q is a vector, numerically giving the expert value for the future returns of assets, 

defined in P; 

Ω is a diagonal matrix, which formalizes the uncertainty of the views. The 

expert views are assumed to be uncorrelated, which makes Ω a diagonal one;  

τ is a weighted coefficient, τ < 1, which is used to keep same correlation 

relationships between the asset returns, but the intensities of these correlations are 

lower in comparison to the initial covariance matrix 𝚺. 

The views are defined in absolute and/or relative ways. For easier understanding 

of this formalization, an example is given for the case of N=4 assets in the portfolio.  

1. Absolute way of view formalization. The notations P = |
1 0 0 0
0 0 1 0

|,  

𝐐 = |
2%

−4%
| mean that the first view states that asset one will increase its mean return 

with 2% and the asset four will decrease with 4%. 
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2. Relative way of view formalization. The notations 𝐏 = |0 1 0 −1|,  
𝐐 = |3%| say that the return of asset two will outperform the return of asset four with 

3%. It is important to have zero sum for these values on the row of matrix P. 

The uncertainty of matrix 𝛀 contains the variance of the expert views. It is 

assumed that the views are uncorrelated and this results in a diagonal matrix 𝛀  

𝛀 = |

𝜔1 0 ⋯ 0
0 𝜔2 … 0
…
0

…
0

…
⋯

…
𝜔𝑘

| is the k×k matrix, k is the number of expert views.  

Because it is not easy to quantify the uncertainty 𝜔𝑖 , 𝑖 = 1, … , 𝑘, in [16, 22] is 

assumed that the elements of 𝛀 are proportional to the variance of asset returns. 

Therefore, the most used formalization of 𝛀  is  

(36)   𝛀 = 𝜏 diag(𝐏𝚺𝐏T). 

The parameter 𝜏 is named “weight on views”. The value of 𝜏 is accepted to be 

positive, less than 1. In [5] 𝜏 is chosen close to zero. In [20] 𝜏 is suggested to be 

related to the length of the historical period n, for which the asset returns are taken as 

initial data,  = 1/𝑛. The period n corresponds to the value of horizon, during which 

the mean returns are evaluated,  𝐸𝑖 =  
1

𝑛−1
∑ 𝑅𝑖

(𝑗)
 , 𝑖 = 1, … , 𝑁.𝑛

𝑗=1   

The notation used for this model of expert views is P(1), because matrix P 

contains integer algebraic values of 0 and 1. 

The inclusion of expert views in BL model leads to changes of the main 

characteristics of the assets: their mean returns and their volatilities and covariance 

relations. Hence, different values of expert views as different combinations of experts 

will result in different portfolio problems with different portfolio solutions. 

Thus, it is not possible to assess and to compare on common basis the 

performance of the different portfolio solutions. In the next part of this research a 

formal derivation of expert views is done, which are based on additional usage of 

information, given by the historical trends of the assets returns. Such approach allows 

the Markowitz and BL portfolio solutions to be compared on common basis, because 

they are using the same set of historical information about the assets returns. This 

approach is also applicable for cases, when subjective expert views are missing or 

not reliable.   

3. Definition of expert views in BL model from historical trend of assets 

returns 

Without claiming of exhaustive overview, the expert views for future levels of assets’ 

returns are under consideration in [3, 4, 6-10, 13, 14, 19, 20].  

This research applies special form for the definition of matrix P that modifies 

the BL model. The new components of P can take arbitrary values from [–1, +1], 

which is a difference with the classical BL model. The notation P(𝛼) is used, for the 

non-integer, weighted values for the components of the expert views in P.  

The weighted form of views originally was introduced in [26]. It was given new 

interpretation of the content of matrix P as a risk value of special portfolio with equal 

weights of the assets. The resulting new values of expert views are calculated from 
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additional estimation of the historical data of the assets’ returns. Using the conclusion 

from [2] that the investor with forecasting abilities can improve the expected utility 

of the portfolio, here the new form of forecasting is based on additional evaluations 

of the differences between the implied and historical mean assets’ returns. The 

weighted form of matrix P is derived, according to this difference. 

Let assume that s-th row 𝐩𝑠 of matrix P contains two components, +1  

and –1, situated respectively on i-th and j-th columns, where  

𝐩𝑠 =  |0 ⋯ 𝑝𝑠𝑖 0 … 0 𝑝𝑠𝑗 … 0|, 𝑝𝑠𝑖 ≠ 𝑝𝑠𝑗  , |𝑝𝑠𝑖| =  |𝑝𝑠𝑗| =1, and if 

𝑝𝑠𝑖 > 0 then 𝑝𝑠𝑗 <0, if 𝑝𝑠𝑖 < 0 then 𝑝𝑠𝑗 >0. 

The matrix 𝚺 is a symmetrical N×N square one with volatilities on its diagonal 

to the corresponding i = 1, …, N assets 

𝚺 = |
𝜎11

2 … 𝑐1𝑁

… … …
𝑐𝑁1 … 𝜎𝑁𝑁

2
|. 

Using (36), the matrix 𝛀  will be diagonal one with components 𝜔ss, s=1, …, k, 

or 

(37)   𝜔ss =  𝜏 (𝜎𝑠𝑖
2 +  𝜎𝑠𝑗

2 −  2𝑐𝑖𝑗), 𝑠 = 1, …, k,  i, j = 1, …, N. 

Relation (37) is compared with a portfolio, containing two assets with equal 

weights and negative correlation. Following [23], the volatility of this portfolio gives  

(38)    𝜎𝑝
2 = 0.5 (𝜎1

2 + 𝜎2
2 −  2𝑐12), 

where 𝜎1
2 , 𝜎2

2 ,  𝑐12  are the volatilities of assets 1 and 2 and the covariance between 

the returns of these two assets.  

The comparison between relations (37) and (38) shows that the variation of the 

subjective view 𝜔ss is proportional to the risk of a virtual portfolio, which contains 

only two assets with equal weights. But assuming different weights for the subjective 

views the vector 𝐩𝑠 will have non integer components like   

(39)   𝐩𝑠 =  |0 ⋯ 𝛼𝑖 0 … 0 −𝛼𝑗 … 0|. 
The values 𝛼𝑖 and 𝛼𝑗 must satisfy the normalization equation    

(40)   |𝛼𝑖| +  |𝛼𝑗| = 1.  

The modification (39) makes the matrix 𝛀   with new components  

(41)   𝜔ss =  𝜏 (αi
2𝜎𝑠𝑖

2 +  αj
2𝜎𝑠𝑗

2 −  2𝛼𝑖𝛼𝑗𝑐𝑖𝑗). 

In [24] 𝛼𝑖 is assumed to be the maximal difference between the historical 

average return Ei and the implied return Пi, normalized by the asset volatility 

(42)   if   𝛼𝑖 > 0   then  max
𝑖

(
 П𝑖−E𝑖

𝜎𝑖
2   ) ,   𝑖 = 1, … , 𝑁.  

For the case (42) the asset i is underestimated and it is expected its mean return 

to increase. Respectively, j is defined from the minimal value if the relation holds 

(43)   if   𝛼𝑗 < 0   then  min
𝑗

(
 П𝑗−E𝑗

𝜎𝑗
2   ). 

For this case j is overestimated and it is expected its mean return to decrease. 

The s-th component of matrix Q, 𝑞𝑠 is assumed to have value according to (44),  

(44)   max( E ), 1, 2, ..., .s i i
i

q i N     
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The notation used in the this case of weighted views is P(𝛼), because matrix P 

contains  algebraic values of 𝛼𝑖, which satisfy the normalization Equation (40).  

4. Application of BL model for active portfolio management 

The modification of the expert views for the BL model are applied for active 

management. Small set of 5 technological companies are used: APPLE, GOOGLE, 

AMAZON, MICROSOFT and FACEBOOK. Market data from January till July 2018 

have been used from [29].  The average monthly closing prices are the initial data for 

the definition of the portfolio problem. The returns of the assets for the first six 

months of 2018 are used as historical data. These data are used for the evaluation of 

the mean assets returns and the covariance matrix. They give the initial parameters 

for the classical mean variance portfolio model and for BL one: matrices EMV and 

𝚺MV. Additionally, from these historical data, the parameters of matrices P(𝛼)  and 

𝛀 are evaluated. Thus, both problems MV and BL are well numerically defined. Their 

solutions  𝐰MV
opt

 (for MV problem) and 𝐰BL
opt

 for (BL model) are applied for the next, 

future month of July 2018. In the end of month of July, having the real data about the 

assets returns 𝐄𝐫 and covariation matrix ∑𝐫, the results of the investments with the 

weights 𝐰MV
opt

 and 𝐰BL
opt

 are compared. The portfolio returns and risks with these two 

sets of weights are evaluated, Fig 2.  

 

Fig. 2. Common base for the evaluation of MV and BL portfolio models 
 

Thus, starting with the same set of data for the historical period, applying the 

classical MV portfolio and the modified BL models, it is possible to assess the benefit 

from these two investment decisions. For implementation of active portfolio 

management, the next investment period will use as historical data these one from 

February to July (rolling 6 months period). The new evaluated weights will be applied 

for the next, future month of August.  Hence, the active strategy by using 6 months 

historical data, after evaluation of  𝐰MV
opt

 and 𝐰BL
opt 

, they are applied for the next future 

month. To be able the reader to check and to follow the computations, the algorithm 

in the next section is illustrated by calculations only for the first investment period: 

Risk (BL) 

Jan Feb Mar Apr May Jun Jul 

MV 

BL 

ΣrEr 

Er Σr 

X 

X 

𝐰MV
opt 

𝐰BL
opt 

Return (MV) 

Return (BL) 

Risk (MV) 
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the historical period is from January to June and the investment decisions and 

comparisons are done for the month of July.  

5. Algorithm for active portfolio management with modified BL model 

The initial data of the technological companies January-July 2018 are the following:  

APL=[–3.658677351; 4.090484081; –2.671637211; 9.245795939; 

1.662532915; 0.895974703; 12.10366586]; 

GOOG=[–4.170135971; 0.173009734; –4.920339419; 3.356001965; 

6.928137123; 4.519526778; 3.279055194]; 

AMAZ=[10.18724871; 6.794716245; –4.68376233; 8.628347616; 

6.219594006; 5.344953989; 6.343110781]; 

MICR=[1.43508572; 1.675810417; 0.339846685; 4.040778655; 3.691988306; 

4.053889582; 3.866427325]; 

FACE=[–2.537473141; –3.761009093; –5.579037757; 11.67173454; 

6.744448251;  2.406708566; –11.23933168 ]. 

The boldface values are the future mean returns of the assets for the month of 

July. The risk free value has been taken according to the American interest rate (Fed) 

from [30],  𝑟𝑓 = 2.5%. The two portfolio problems, based on MV and BL models use 

6 month historical data and evaluate the weights of their optimal solutions  𝐰MV
opt

 and 

𝐰BL
opt

. These weights are applied for the evaluation of the portfolios risk and return 

but with the real returns Er  and ∑𝐫for month of July 2018 (the boldface noted values 

from the initial data given above). The portfolio return and risk for MV model is 

noted as Return(MV) and, Risk(MV), respectively for the BL model as Return(BL) 

and Risk(BL)  

(45) Return(MV) = 𝐄𝐫
T 𝐰MV

opt
 ,      Risk(MV) = 𝐰MV

optT 
∑𝐫 𝐰MV

opt
,  

Return(BL) = 𝐄𝐫
T 𝐰BL

opt
,       Risk(BL) = 𝐰BL

optT 
∑𝐫 𝐰BL

opt
, 

The matrix ∑𝐫 is the actual covariance matrix, evaluated using data for the  

6-month period from February till July 2018. The evaluations are performed first for 

the MV portfolio problem and then for the BL one. The MATLAB software suit is 

used. 

5.1. Definition and solution of MV portfolio problem 

1. Evaluation of the average historical returns 𝐄MV. For the period of the first 6 

months for the assets returns gives, 

𝐄MV
T  = [1.5941 0.9810  5.4152  2.5396  1.4909]. 

2. Evaluation of the historical covariance matrix. For the  historical 6 months it 

is   

MV = [22.2121     13.2647     9.2294       4.7074     23.1657; 

13.2647     23.1086    9.2136       7.0292     25.0760; 

9.2294       9.2136      27.5282     4.2794    16.3609; 

4.7074       7.0292      4.2794       2.5359     9.4524; 

23.1657     25.0760   16.3609      9.4524     45.1764]. 

These initial data define the MV portfolio problem, which is solved  
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min
𝐰

[𝛿𝐄MV
T 𝐰 − (1 − 𝛿)𝐰T∑MV 𝐰],  𝐰T𝟏 = 𝟏, 𝐰T = (𝑤1, … , 𝑤𝑁) ≥ 0, 

𝟏T = |1 ⋯ 1|𝑁×1. 

3. Evaluation of the “efficient frontier”. By changing 𝛿, 0 ≤ 𝛿 ≤ 1, 
𝛿 = 0: 0.01: 1,  the “efficient frontier” is defined by 101 MV problem solutions and 

its graphical presentation is given in Fig. 3. The portfolio characteristics ReturunMV(i) 

and RiskMV(i), i=1, …, 101 are found. The values of the Excess_Sharp_ratioMV(i),  

i=1, …, 101, are evaluated by the relation   

Excess_Sharp_ratioMV(i)=(ReturnMV(i) – risk_free)/RiskMV(i),  i=1, …, 101. 

The portfolio solutions of the weights 𝐰MV
opt

 are kept in a matrix with dimension 

101×5. The relation  Exess_Sharp_ratioMV from RiskMV is given in Fig. 4. 

4. Evaluation of the maximal value of the Excess Sharp ratio. This gives 

max
𝑖=1,…,101

[Excess_Sharp_ratioMV(𝑖)]   =  0.1640, 𝑖max = 87. 

and the corresponding weights of this portfolio are 

𝐰MV
optT(𝑖max) = [ 0    0.0000    0.3296    0.6704         0]. 

These portfolio weights will be invested for the next, future month of July.  
 

 
     Fig. 3. Comparison of the efficient frontiers     Fig. 4. Comparison of the portfolio  

for the MV and BL portfolios for MV and BL cases characteristics of Excess Sharpe ratio  

5.2. Definition and solution of the BL portfolio problem 

The BL model first evaluates the “implied” assets returns. For that case the 

characteristics of this particular market with 5 assets must be evaluated. This  specific 

market does not allow world financial indices to be used. The specific market is given 

by the tangent point between the Capital Market Line and the efficient frontier. The 

tangent line must pass through the risk free point.  Analytically, the new market point 

in this research is found from system of two equations: the quadratic analytical 

approximation of the efficient frontier and a tangent line toward the efficient frontier, 

which passes through the risk-free point.   

1. Analytical approximation of the MV “efficient frontier”, numerically 

evaluated by 101 points from p.3 of the MV portfolio case. The approximation of the 

MV “efficient frontier” is done by a quadratic curve 

(46)   𝑦 = 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0, 
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where y is the portfolio Return and x is the portfolio Risk. Least square method for 

this approximation is used to evaluate the unknown coefficients  𝑎0, 𝑎1, 𝑎2 from the 

linear equation system  

|

𝑛 ∑ 𝑥𝑖
𝑛
𝑖=1 ∑ 𝑥𝑖

2𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1 ∑ 𝑥𝑖

2𝑛
𝑖=1 ∑ 𝑥𝑖

3𝑛
𝑖=1

∑ 𝑥𝑖
2𝑛

𝑖=1 ∑ 𝑥𝑖
3𝑛

𝑖=1 ∑ 𝑥𝑖
4𝑛

𝑖=1

| |

𝑎𝑜

𝑎1

𝑎2

| = |

∑ 𝑦𝑖
𝑛
𝑖=1

∑ 𝑦𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1 𝑥𝑖

2

|, 

where the values of the portfolio risk are 𝑥𝑖 ,  and for the portfolio return are 𝑦𝑖, 

(𝑥𝑖, 𝑦𝑖), n=101 points from the efficient frontier.   

Graphically, the MV portfolios of the “efficient frontier” and its quadratic 

approximation are given in Fig. 5. The values of the coefficients are calculated to  

[a2  a1  a0 ]T = [ –0.0045    0.2394    2.0917]T. Because the tangent point with the 

Capital Market Line is needed for the evaluation of the market characteristics, one 

needs good approximation only for the area, where the market point is expected. This 

consideration can help for decrease the number n of the efficient frontier.   

2. Analytical evaluation of the market point (𝑦𝑀 , 𝑥𝑀). The market point is a 

tangent one between the curve of the approximated MV “efficient frontier” and the 

Capital Market Line. The latter also has to pass through the point of the risk free asset, 

(0, 𝑟𝑓 = 2.5%). Using relations from the analytical geometry, the tangent line t 

towards the MV “efficient frontier” must have analytical description 

(47)   𝑡 ≡ 𝑦 − 𝑦𝑀 =
𝑑𝑦

𝑑𝑥
(𝑦𝑀 , 𝑥𝑀)(𝑥 − 𝑥𝑀),  

where   
𝑑𝑦

𝑑𝑥
(𝑦𝑀 , 𝑥𝑀) = 2𝑎2𝑥𝑀 + 𝑎1, 

and the tangent point (𝑦𝑀 , 𝑥𝑀)  give the parameters of the unknown market point.   
 

 
Fig. 5. Graphical presentation of the MV “efficient       Fig. 6. Graphical presentation of 

frontier” and its quadratic approximation           the tangent line to the market portfolio 
 

Because the tangent line t passes through the risk free point, hence it holds 

𝑡(0, 𝑟𝑓) ≡ 𝑟𝑓 − 𝑦𝑀 = 2𝑎2𝑥𝑀 + 𝑎1(0 − 𝑥𝑀). 

Both equations of the tangent line (47) and the approximation of the MV 

“efficient frontier” (46) define two equations with two unknown, 𝑦𝑀 = 𝐸𝑀 and  

𝑥𝑀 = 𝜎𝑀
2 :  

𝑡(0, 𝑟𝑓) ≡ 𝑟𝑓 − 𝑦𝑀 = 2𝑎2𝑥𝑀 + 𝑎1(0 − 𝑥𝑀), 

𝑦(𝑥) ≡  𝑦𝑀 = 𝑎2𝑥𝑀
2 + 𝑎1𝑥𝑀 + 𝑎0. 
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From these two equations explicit analytical relation for the market risk 𝜎𝑀
2  is 

found 

(48)   𝑥𝑀 = √
𝑎0−𝑟𝑓

𝑎2
  =  𝜎𝑀

2 . 

The market return 𝑦𝑀 =  𝐸𝑀 is calculated from (46) for given 𝑥𝑀. Using these 

values for the market point this gives (𝑦𝑀 = 𝐸𝑀 = 3.973, 𝑥𝑀 = 𝜎𝑀
2 = 9.5626). The 

graphical presentation of the tangent line is given in Fig. 6. 

3. Evaluation of the market weights. These weights will show market 

capitalizations 𝐰𝑀 =  𝐰capitalization in BL model. They are evaluated from a 

classical Markowitz problem for minimization of the portfolio risk, but keeping the 

portfolio return on the level of 𝑦𝑀 = 𝜎𝑀
2 = 3.973. The formal constrained 

optimization problem is  

min
𝐰

[𝐰T ∑MV  𝐰], 𝐄MV
T 𝐰 = 𝑦𝑀 , 𝐰T𝟏 = 𝟏, 𝐰T = (𝑤1, … , 𝑤𝑁) ≥ 0, 𝟏 = |

1
.
1

|

𝑁×1

. 

The solution of this problem gives 

𝐰𝑀
T =  𝐰capitalization

T =  [0  0   0.4985  0.5015  0 ]T. 

4. Evaluation of the risk aversion parameter. From (18), this gives 𝜆 = 0.1540. 

5. Evaluation of the excess implied returns П
∗
, and the implied returns П from 

(19). This gives 

П
∗T =  [1.0723  1.2505  2.4443  0.5245  1.9865]T and 

 ПT =   [3.5723  3.7505  4.9443  3.0245  4.4865]T. 

6. Definition of vectors P and Q. The subjective views are defined from (42), 

(43) and (44). Using assets returns EMV(i) and assets EMV(i) risks 𝜎𝑖
2 , 𝑖 = 1, … , 𝑁, 

the components of the weighted vector P(𝜶) are 

𝛼𝑖 = 0.8652 =  max
𝑖

(
 П𝑖−𝐸𝑖

𝜎𝑖
2   ) , 𝑖 = 2;       𝛼𝑗 = −0.1348 = min

𝑗
(

 П𝑗−𝐸𝑗

𝜎𝑗
2 ) , 𝑗 =3, 

𝑞2 = (П2 − E2) = 0.4709, 

which defines the vector P=[0  0.8652  –0.1348  0  0]. Because only one view is 

made, P is a vector and Q=q3 is a unique value.  

7. Evaluations of the BL mean returns and covariance matrix from (27). The 

parameter  must be less than 1 and here it is chosen  = 0.5.  From (26), it follows: 

 𝐄BL
T = [3.6347    3.8648      4.9703    3.0581    4.6053], 

𝚺BL =  [ 31.6455   16.8318    13.1475     6.1613    31.5626 

6.8318      29.0457    12.5438    8.8948    31.7755 

16.8318    29.0457   12.5438     8.8948    31.7755 

13.1475    12.5438    41.0022    6.0443    23.2145 

6.1613       8.8948      6.0443       3.3198   12.4647 

1.5626       31.7755    23.2145   12.4647   61.6961]. 
8. Evaluation of the BL “efficient frontier” with the data of p. 7. A set of 

optimization problems is solved as in Step 3 of Paragraph 5.1. New “efficient 

frontier” is evaluated. Both frontiers for MV and BL cases are given in Fig. 3. The 

corresponding values of the Excess_Sharp_ratioBL(i), i=1, …, 101, are evaluated by 
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the same way as in Step 3. The portfolio solutions of the weights 𝐰BL are kept in a 

matrix with dimension 101×5. 

9. Evaluation of the maximum value of the Excess Sharp ratio. For BL case  

max
𝑖=1,…,101

[Excess_Sharp_ratioBL(𝑖)] = 0.1795, imax=86, 

and weights are:     𝐰BL
optT

(𝑖max) = [ 0    0.0000    0.0836    0.9164         0]. 

These weights 𝐰BL
optT

= 𝐰BL
optT

(𝑖max) will be applied for the month of July.  

6. Comparison of the MV and the modified BL portfolio models.  

The portfolios weights 𝐰MV
opt

 and 𝐰BL
opt

 are chosen from the corresponding “efficient 

frontiers” of MV and BL models. These portfolios correspond to the “best” case, 

where the Excess Sharp ratio has a maximum. The comparison is based on the 

application of these weights for the future month July. In the end of July the portfolio 

returns and risks are assessed with the calculated prior 𝐰MV
opt

 and 𝐰BL
opt

 and the 

posterior evaluated real asset returns Er and risk 𝚺𝐫. The corresponding portfolio 

characteristics with the modified BL and MV models are assessed and compared.    

1. Estimation of the real mean return and covariation matrix for the month of 

July. These real posterior data of asset returns, noted in bold for July are given  as  

𝐄𝐫
T = [12.10366586   3.279055194   6.343110781   3.866427325   –11.23933168]. 

The new covariance matrix for the actual six months from February to July is 

r = [34.2889   14.5041   9.0843   5.9150   0.1920 

14.5041    20.0116    7.9826    6.2933   16.7175 

9.0843       7.9826    23.0631   3.7420   11.9465 

5.9150       6.2933     3.7420   2.3648    5.4640 

0.1920     16.7175   11.9465   5.4640   60.7983]. 

The evaluated weights 𝐰MV
opt

   and 𝐰BL
opt

 define two investment decisions for 

July.   

2. Evaluation of portfolios Risks and Returns with the new mean return data 𝐄𝐫
T 

and covariance matrix 𝚺𝐫. Relations (45) are applied and the portfolio characteristics 

for the MV and modified BL models one are kept. The rolling procedure for 

investment is applied till month of November 2018. The average results for 

investment from July until November are given on Table.1 It is seen that the returns 

of MV and BL portfolios are very close. The MV model provides a bit higher return.  

However, the risk of MV portfolio is considerably higher according to the BL one. 

Hence having close values of returns but very different level of risk, the BL model 

gives preferences for the active management of portfolio investments. 

Table 1. Comparison of the MV and BL portfolios  

MV optimization 

Return(MV) = 

𝐄𝐫
T 𝐰MV

opt
 

Risk(MV)  = 

𝐰MV
opt T

 𝚺𝐫  𝐰MV
opt

 
𝐰MV

opt
 

4.6828 5.2225 [0   0   0.3296   0.6704] 

BL optimization 

Return(BL) = 

𝐄𝐫
T 𝐰BL

opt
 

Risk(BL) = 

𝐰BL
opt T

 𝚺𝐫  𝐰BL
opt

 
𝐰BL

opt
 

4.0734 2.7202 [0   0   0.0836   0.9164] 
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This procedure for evaluations was sequentially applied in time, which gives an 

active portfolio policy. Advantages of this algorithm comes from the opportunity to 

design a portfolio in a particular market with a small number of assets, to estimate 

the market characteristics of this particular market, and to use additional information 

from the historical data for the definition of the expert views. Thus, comparison 

between BL and MV portfolio models can be done, on the basis of common initial 

data for the investment.   

7. Conclusions 

The paper makes an analytical overview of the formal relations, which are needed for 

the definition of the BL portfolio model. The last is based on the usage of the 

Markowitz portfolio models and the formal relations originated from the Capital 

Asset Pricing Theory. The BL portfolio model needs as input data the parameters of 

the market point and the set of parameters from expert views. The market point, given 

by world market indices cannot be used in case of limited set of assets in the portfolio, 

because new particular small market is formed. This lack of market characteristics in 

this research is solved by definition of a set of equations with quadratic 

approximation for the efficient frontier and additional linear relation for the tangent 

line towards the efficient frontier, which passes through the risk-free point. 

Additionally, new formalization of the expert views is applied, which is based on 

assessment of the difference between the implied and historical mean returns of the 

assets. Thus, the original BL model has been modified by means to overcome the 

requirement for having subjective views. The BL modification in the form of expert 

views allows the two general portfolio models, MV and BL one to be compared 

because they use common initial information for the definition of the portfolio 

problems. The modification of the BL model has been performed for the parameters 

of the expert views by introducing weighted form of matrix P. The application of an 

active policy of portfolio management based on BL model has been illustrated, 

applying rolling horizon for portfolio management. This policy of sequential 

application of the modified BL model for active portfolio management gives better 

benefits in comparison with the classical MV model. The experimental results 

illustrate better performance of the applied modified BL model.  
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