
 21

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 20, No 1

Sofia 2020 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2020-0002

EnQuad: A Publicly-Available Simulator for Quantum Key

Distribution Protocols

Mohamed S. Abdelgawad1, Botrous A. Shenouda1, Sameh O. Abdullatif2
1Electrical Engineering department, The British University in Egypt (BUE), Cairo, Egypt
2Electrical Engineering Department, and FabLab, Centre for Emerging Learning Technologies (CELT),

The British University in Egypt (BUE), Cairo, Egypt.

E-mails: mohamed127811@bue.edu.eg botrous127265@bue.edu.eg sameh.osama@bue.edu.eg

Abstract: In this paper, we present EnQuad version 1.0: a high-speed and

expandable simulator for Quantum Key Distribution (QKD) protocols. Surpassing

available simulators, EnQuad does not only simulate a QKD stack, but also does

security testing and guides the researcher on which reconciliation protocol should

be used in his experimental setup. On the top of that, it recommends changes for the

researcher to satisfy security or a given target key-rate if any of them is not already

fulfilled. Although EnQuad V1.0 is concerned with depolarizing channels and

Individual Intercept-and-Resend attacks, EnQuad is featured with 24 parameters and

9 modular functions so that it could be expanded to a wide range of QKD protocols.

In addition, we validated EnQuad outcomes against a comparable simulator and

against theory. Furthermore, a set of 11 experiments showed that EnQuad runs 6.12×

to 12.2× faster than a comparable simulator. EnQuad was implemented in MATLAB

and the code is available online.

Keywords: QKD simulators, Information Security, Quantum Cryptography,

Scientific Computations, Software Technologies.

1. Introduction

Classical cryptographic protocols that are being deployed at this moment for secure

data communication are highly threatened to get broken by quantum computers, once

built on a large scale. Quantum cryptography came as a promising substitute to

provide unconditional security based on ever-sustainable laws of quantum physics

such as Heisenberg’s uncertainty principle and no-cloning theorem [1].

Quantum cryptographic protocols employ Quantum Key Distribution (QKD)

schemes based on photon polarization or electron spin encoding [2]. A secret random

key is shared between two parties, usually known as Alice and Bob, with immunity

against Eavesdropper’s (Eve attacks). However, both performances, impersonated in

the secret-key rates, and security of QKD protocols heavily depend on numerous

 22

critical system parameters such as input number of photons, channel noise

type/quantity, Eve attack method/level and source/detector imperfections [3]. As

such, a researcher might go into arduous experimental work before knowing which

combinations/lower-or-higher bounds of those parameters could achieve his target

key-bitrate in real life [4, 5]. Consequently, QKD simulators stand as urgent tools to

increase the pace of QKD deployment and to guide the researcher on the parameters

values that work best in his conditions, and on the choice of sub-protocols in order to

satisfy security and target performance.

A few works have developed QKD simulators [6-8]. However, the simulator in

[6] was built as a part of quantum mechanics visualization project for the

undergraduate levels. Its target was to visualize basic principles rather than

performance analysis or security requirements reporting. In [8], the simulator does

not currently include the quantum channel noise, which is a serious drawback since

it heavily reflects on the estimated secret-key rates and plays a profound role in the

protocol security. Furthermore, the number of input pulses is limited to only 1000,

leading to finite-size overheads [9]. Work in [7] is not publicly-available. To add, it

does neither tell the researcher how to reach his target secret-key rates nor give

information about the question of security violation/satisfaction at the researcher’s

input conditions.

In this paper, we present EnQuad V1.0: a publicly-accessible simulator for QKD

protocols, where the code is given in [10]. The contributions of this work are as

follows: first, we considered depolarizing channel effect, Individual Eve Intercept-

and-Resend attacks and number of input photons as controllable variables that

developers can change according to their prospective setups. Second, EnQuad does

not only output figure-of-merit parameters such as Quantum Bit Error Rate (QBER)

and secret-key rates, it also guides the researcher through which system parameters

he should use to satisfy security and to reach his target key-rate. This saves arduous

experimental work. Third, we compressed full behaviour of the depolarizing channel

and the polarization modulator in the receiver from intensive matrices operations to

only 4 statements. That reflected on speeding up the simulation time 6.12× to 12.2×

compared to work in [8]. This speedup is of high importance, especially when the

number of input photons are scaled to hundreds of thousands. Finally, EnQuad, unlike

all other simulators, is featured with modularity, in the sense that all parts were

implemented separately/independently with clear interfaces (sets of well-defined

variables). This greatly helps EnQuad to seamlessly embrace a wide range of

prospective QKD setups/protocols.

The rest of this paper is organized as follows: first, we briefly describe “BB84”:

the most widely known QKD protocol, developed by H. Bennett and G. Brassard in

1984 (see [3]), second, we explain the settings of EnQuad V1.0, where it lies in the

much larger picture of Quantum Cryptography and its expansion opportunities;

fourth, we elaborate on our simulation model and how we compressed the description

of complex parts into a few statements which heavily contributed to EnQuad speed;

fifth, we validate EnQuad QBER outcome against previous work and against

theoretical formulas in variant conditions, also, we demonstrate how EnQuad guides

the researcher to achieve security and target-key rates; finally, we run multiple

 23

experiments to test the speed of EnQuad against another accessible simulator and

show EnQuad results in a set of scenarios. We further guide the reader through how

to use EnQuad in Appendix.

2. BB84

As any communication system, BB84 is mainly composed of a transmitter, a channel

and a receiver. At the transmitter side, Alice sends a stream of pulses, one at a time.

The pulse should be generated by a Single-Photon Source (SPS). Each pulse gets

individually polarized by one of two mutually non-orthogonal bases: rectilinear (+)

or diagonal (×). If (+) basis is selected, key bit 0 is encoded as horizontally-polarized

pulse with state vector of |0º〉 and key bit 1 is encoded as vertically-polarized |90º〉. If
(×) basis is selected, key bit 0 is encoded as circular-right polarized pulse with state

vector of |45º〉 and key bit 1 is encoded as circular-left | –45º〉. This is practically done

by a polarization modulator controlled by bases selector and key bits generator as

depicted in Fig. 1. The pulses stream goes through the quantum channel that could be

fiber or free-space. The channel might be an amplitude-damping channel, a phase-

damping channel or a depolarizing channel.

At the receiver side, Bob decodes the received pulses by measuring their

polarization states. Alice and Bob then reveal their bases choices and discard the bits

that were measured with unmatched based. The measurement setup is practically

achieved by a polarization modulator followed by a Polarizing Beam Splitter (PBS)

and two single photon detectors (SPD0 and SPD1) [11], as shown in Fig. 1. The

remaining key after discarding the bits corresponding to unmatched bases is called

the sifted key. Alice and Bob then undergo classical post-processing schemes:

reconciliation followed by privacy amplification. Reconciliation is to correct the

erroneous key bits as a result of channel noise or Eve attacks. The error rate in the

sifted key is called Quantum Bit Error Rate (QBER). Privacy amplification is then

applied where further key bits are discarded to maximize security against the

information that Eve has gained from the bits that have been revealed during data

reconciliation. The remaining key at the disposal of Alice/Bob is called the secret

key. The ratio between length of the sifted key and that of the secret key is defined as

secret-key bit rate k, which is of a great interest to the QKD development community.

Fig. 1. Schematic of an experimental BB84 setup: Polarizing Beam Splitter (PBS), Single Photon

Source/ Single Photon Detector (SPS/SPD) and polarization modulator

 24

3. EnQuad settings

3.1. Why BB84?

In QKD literature, there is a myriad of QKD protocols as variations around BB84,

including but not limited to, SARG04 [12] and Decoy-state Protocol [13]. Since

BB84 and its variants are the most proven to be secure and the most targeted forms

of quantum cryptography to be experimentally implemented, it is useful to offer a

simulator with its core coded as per BB84. Exploiting EnQuad modularity, explained

in How to use and expand EnQuad, we strongly believe that it could be extended in

future releases to include SARG04 and Decoy-state protocols that are arguably more

practical and higher secret-key rate achievers against certain attacks.

3.2. Source and detector

In EnQuad, a single-photon source (SPS) was employed since it is a critical key for

the security of BB84. A single-photon source prevents Eve from applying Photon

Number Splitting (PNS) attack (see [12] for details), which compromises the

unconditional security of BB84. We also employ a single-photon detector with no

dark counts. Nonetheless, when expanding EnQuad to SARG04 and Decoy-state

protocols in future releases, it would be safe and sensible to include a multi-photon

source (faint laser) and the dark-count rate; since such protocols were primarily built

to maintain unconditional security against such imperfections.

3.3. Channel noise and eavesdropping

We implemented a depolarizing channel: a channel that introduces a bit-flip error or

a phase-flip error or both, at equal probabilities. Depolarization is an important type

of quantum noise that arises in free-space due to weather change and in optical fiber

due to the phase changes along the channel [14]. The overall noise exclusively

depends on the depolarizing parameter 𝑝. As for Eve, she has different strategies of

attack to listen in on Alice’s sent key, including Intercept-and-Resend, PNS, cloning

[15], and faked-states attacks [16]. In Version 1.0 of EnQuad, we implement a

combination of individual Intercept-and-Resend attacks where Eve measures the on-

going pulses, one after another, with the same types of bases available at Alice/Bob

side ((×) or (+)). We also define a parameter called attack level ɛ representing the

ratio of pulses to be attacked. In practice, channel noise and Eavesdropping are

eminent challenges to secret-key bit rate 𝑘 and QKD security. EnQuad tells the

researcher whether his inputs 𝑝 and 𝜀 satisfy the lower bound of security 𝑆lb based

on Shannon mutual information between Alice and Bob and Alice and Eve in our

settings. If his input conditions violate 𝑆lb, EnQuad tells the researcher how much 𝑝

need to change (since the researcher usually has no control on 𝜀). In this way, we are

assisting him to pick the suitable channel for his experimental setup.

 25

3.4. Reconciliation and privacy amplification

Instead of reinventing the wheel and re-implementing available classical

reconciliation and privacy amplification schemes that have been relentlessly

researched in a plethora of studies [17-21], we took a reverse approach. We apply our

settings to the Shannon mutual information between Alice, Bob, and Eve, from which

it is possible to tell the researcher the theoretical secret-key bit rate 𝑘th at its input

conditions. Based on which, EnQuad tells the researcher the lower bound of the

efficiency 𝑓lb of the post-processing schemes required to reach his target secret-key

bit rate 𝑘tr. Afterwards, the researcher could make use of the results in [17] to select

the scheme suitable for his physical experiment based on our reported 𝑓lb. If there is

yet no scheme to satisfy the 𝑓lb at the researcher’s input conditions, then we are

basically setting the standards for the yet-to-be-developed post-processing schemes

required to realize QKD protocols in real-life at the conditions of interest.

4. EnQuad simulation model

At the transmitter side, the bases selector and the key bits generator are simulated as

two uniformly-distributed pseudorandom generators. The built-in MATLAB

function rand, with the Mersenne twister set as the default generator, was used to

generate uniformly-distributed pseudorandom numbers in the interval (0, 1).

Outcomes are then rounded using round, another built-in MATLAB function, that

rounds to the nearest integer. This how uniformly-distributed random binary bits for

the two generators are produced. The first randomly selects bases by setting 0 for (+)

basis and 1 for (×) basis, and the second generates the bits of the key to be sent. Basis

selection and key bits are passed to four if-else cases with output of 1, 2, 3 and 4

representing |0º〉, |90º〉, |45º〉 and |–45º〉, respectively. Since the inputs to the four

if-else cases are uniformly distributed, the output states are also uniformly

distributed.

As for the channel, the depolarizing channel model is given by [22] (see the next

equations (1)-(6)): in (1), where denotes the density matrix of the original

polarization state, i.e., before the channel, and is the output density matrix after

being depolarized by the channel; 1 is the matrix responsible for bit-flip-error; 𝜎2 is

the one responsible for phase-flip error and 3 is doing both errors, all with equal

probabilities
𝑝

3
 and are defined in (2). To follow, the density matrix 𝜌 could be

computed as in (3), where θ is the angle from the reference state, which in our case

is the |0º〉. Thus, 𝜌 of a given polarization state before the channel can be computed

as in (4). When substituting θ = 0º, 90º, 45º and –45º in (4), 𝜌 of the four polarization

states are found as in (5). When substituted in (1), we get 𝜌′(𝑝) for each state as in

(6):

(1) 𝜌′(𝑝) = (1 − 𝑝)𝜌 +
𝑝

3
𝜎1𝜌𝜎1 +

𝑝

3
𝜎2𝜌𝜎2 +

𝑝

3
𝜎3𝜌𝜎3,

(2) 𝜎1 = [
0 1
1 0

] , 𝜎2 = [
0 −𝑖
𝑖 0

] , 𝜎3 = [
1 0
 0 1

],

 26

(3) 𝜌 = |𝜓⟩⟨𝜓|; |𝜓⟩ = [
cos 𝜃
 sin 𝜃

] , 〈𝜓| = [cos𝜃 sin𝜃]

(4) 𝜌 = |𝜓⟩⟨𝜓| = [cos2𝜃 cos𝜃sin𝜃
sin𝜃cos𝜃 sin2𝜃

],

(5) 𝜌0 = [
1 0
0 0

] , 𝜌90 = [
0 0
0 1

] , 𝜌45 =
1

2
[
1 1
1 1

] , 𝜌−45 =
1

2
[

1 −1
−1 1

]

(6)

𝜌0
′ (𝑝) = (

1 −
2𝑝

3
0

0
2𝑝

3

) , 𝜌90
′ (𝑝) = (

2𝑝

3
0

0 1 −
2𝑝

3

),

 𝜌45
′ (𝑝) =

1

2
(

1 1 −
2𝑝

3

1 −
2𝑝

3
1

) , 𝜌−45
′ (𝑝) =

1

2
(

1 −1 +
2𝑝

3

−1 +
2𝑝

3
1

).

As for the receiver, a received photon has four measurement outcomes with

probabilities depending on 𝑝 and on the basis selected. To see how probabilities are

calculated, a photon with 𝜌0
′ is considered. In case the (+) basis is selected for

measurement, 𝜌0 and 𝜌90 are possible outcomes. The probability of the correct

outcome 𝑃(𝜌0) is calculated in (7) where 𝑇𝑟(𝜌) is the trace of matrix 𝜌. Similarly,

the probability of the incorrect outcome is calculated in (8). It is useful to observe

that in case of an ideal channel, 𝑃(𝜌0) = 1, and 𝑃(𝜌90) = 0. In case the (×) basis is

selected 𝑃(𝜌45) and 𝑃(𝜌−45) are calculated in (9).

 𝑃(𝜌0) = Tr{𝜌0
′ 𝜌0} = 1 −

2𝑝

3

 𝑃(𝜌90) = Tr{𝜌0
′ 𝜌90} =

2𝑝

3

 𝑃(𝜌45) = Tr{𝜌0
′ 𝜌45} =

1

2
 , 𝑃(𝜌−45) = Tr{𝜌0

′

𝜌−45} =

1

2

After calculating the measurement outcomes probabilities for the other three

states (𝜌90
′ , 𝜌45

′ and 𝜌−45
′), we found they are completely analogous with same

probabilities, yet with different sequence as shown in Table 1. That is how we

compressed the full behavior of the depolarizing channel and the polarizing

modulator in the receiver from computationally-intense matrices operations to only

four statements, which positively contributes to the simulator speed. In our simulator,

each state is represented by the corresponding four outcomes probabilities in a 1D

vector. According to the basis selected for measurement, only two outcomes’

probabilities are selected, then passed to a random binary generator with non-uniform

distribution that is controlled by those two probabilities to generate bit 0 or 1

representing the decoded bit.

 27

Table 1. Probability of measurement outcomes for the four possible states of the received photon

Received photon

state

Measurement with (+) basis Measurement with (×) basis

Probabilities

𝑃(𝜌0) 𝑃(𝜌90) 𝑃(𝜌45) 𝑃(𝜌−45)

𝜌0
′ 1 −

2𝑝

3

2𝑝

3
 0.5 0.5

𝜌90
′

2𝑝

3
 1 −

2𝑝

3
 0.5 0.5

𝜌45
′ 0.5 0.5 1 −

2𝑝

3

2𝑝

3

𝜌−45
′ 0.5 0.5

2𝑝

3
 1 −

2𝑝

3

5. QKD QBER, security and reconciliation in EnQuad

5.1. QBER

The transition (error) probability in the channel 𝑞ch could be seen from Table 1 as

2𝑝/3 , where 𝑝 is the channel depolarizing parameter. QBER is the error ratio in the

sifted key due to channel and Eve. Transition probability at Bob side due to the Eve

Intercept-Resend 𝑞e is known as 𝜀/4 [1], where 𝜀 is the attack level defined as ratio

of the number of pulses to be attacked over the number of input pulses. 𝜀/4 comes

from the fact that Eve has no idea about the polarization states sent by Alice, thus,

Eve inevitably intercept and resend a pulse in an incorrect (unmatched with Alice)

measurement basis 50% of the time. When Bob receives a pulse incompatible with

his measurement base (turns to be matched with Alice after sifting), then the bit is

also decoded incorrectly 50% of the time, introducing a total of 50% × 50% = 25%

error in Bob’s decoded bits. Though, Eve may not intercept-resend all the input

pulses, she may select a number of pulses to attack, which is represented by 𝜺, if,
however, she chooses to attack all pulses, 𝜺turns to be 1 and 1/4 of the sifted key

will be erroneous. QBER could be calculated given 𝑞ch and 𝑞e. Since the channel is

binary symmetric, the overall transition probability of a bit starting from Alice source

to Bob detector going through Eve followed by the channel (also regarded as the error

probability in the sifted key) is calculated by the next equation:

QBER = 𝑞e(1 − 𝑞ch) + (1 − 𝑞e)𝑞ch =

𝜀

4
[1 −

2𝑝

3
] + [1 −

𝜀

4
]

2𝑝

3
=

=
𝜀

4
+

2𝑝

3
(2 − 𝜺).

Without the presence of Eve, QBER turns to be equal 𝑞ch . In practice, 𝑞ch that

is estimated beforehand is the threshold revealing the presence of Eve. In the

reconciliation process, QBER is estimated over a randomly-permuted part of the

 28

sifted key, if the estimated QBER largely exceeds 𝑞ch, the QKD protocol may be

aborted and re-run. If QBER exceeds 𝑞ch with a tolerable amount (still satisfies the

lower bound of security to be discussed below), Alice and Bob may proceed to post-

processing schemes to correct the errors in the sifted key and minimize Eve

information. As such, QBER is a critical parameter in QKD protocol security

analysis. EnQuad computes QBER at the researcher’s input conditions as the ratio of

errors in the sifted key. In QBER verification, EnQuad QBER is compared with

QBER resulted from simulator in [8] at the same conditions, and the theoretical

QBER in (10) at such conditions.

5.2. Lower bound of security

A QKD protocol is secured as long as the mutual information between Alice and Bob

𝐼(𝒜; ℬ) is greater than the mutual information between Alice and Eve 𝐼(𝒜; ℰ) as

stated in (11). Since we are studying a memoryless symmetric source with alphabet

𝒜 = {𝑎0, 𝑎1} = {0, 1} then 𝑝(𝑎0) = 𝑝(𝑎1) = 1 2⁄ and the entropy of the source

𝐻(𝒜) is at its maximum: 𝐻(𝒜) = 1. In addition, since we are dealing with a binary

symmetric channel where conditional probabilities 𝑝(𝑎0|𝑎1) = 𝑝(𝑎1|𝑎0) and

𝑝(𝑎0|𝑎0) = 𝑝(𝑎1|𝑎1) then conditional entropies 𝐻(𝒜|ℬ) and 𝐻(𝒜|ℰ) are equal to

1 − ℎ(𝛼) where ℎ(𝛼) is the Shannon binary entropy with transition probability

𝛼: ℎ(𝛼) = −𝛼log2𝛼 − (1 − 𝛼) log2(1 − 𝛼). In the case of communication between

Alice and Bob, 𝛼 is actually the QBER calculated in (1). In the case of Eve attacking

Alice, 𝛼 is defined as (
1

2
− 𝑞e). Accordingly, the lower bound of security in (11) can

be reformulated as per our settings as in (12). Note that it is valid to say

QBER < (
1

2
− 𝑞e) ifℎ(QBER) < ℎ (

1

2
− 𝑞e)as long as QBER ≤ 0.5 and

(
1

2
− 𝑞e) ≤ 0.5, which is true in our case. The maximum of (

1

2
− 𝑞e) is 0.5 that’s

when there is no Eve’s attack; QBER also cannot exceed 0.5 since the depolarization

parameter𝑝 is limited to 0.25 for usable channels [22].

 𝑆lb ∶ (𝐼(𝒜; ℬ) = 𝐻(𝒜) − 𝐻(𝒜|ℬ)) >(𝐼(𝒜; ℰ) = 𝐻(𝒜) − 𝐻(𝒜|ℰ))

𝑆lb ∶ (1 − ℎ(QBER)) > (1 − ℎ [

1

2
− 𝑞e]) ∶ ℎ(QBER) < ℎ [

1

2
− 𝑞e]

: QBER < [
1

2
− 𝑞e] ∶ [

𝜀

4
+

2𝑝

3
(2 − 𝜀)] < [

1

2
−

𝜀

4
] ∶ 𝑝 <

4(1−𝜺)

3(2−𝜺)

Based on (12), EnQuad tells the researcher whether his input conditions violate

the security condition (i.e., he should abort the protocol). Additionally, if the lower

bound of security can be satisfied by decreasing his channel depolarizing parameter

𝑝 (which practically means to replace his channel by a lower-𝑝 one), it tells him so

with how much it should be decreased.

 29

5.3. Lower bound of reconciliation efficiency

The theoretical secret-key rate 𝑘th is the difference between 𝐼(𝒜; ℬ)and 𝐼(𝒜; ℰ)

[17]. When we apply our settings, 𝑘th can be defined as in (13). The quantity

ℎ(QBER) is actually seen as the Shannon minimum amount of information that Bob

needs from Alice to correct the errors in his decoded bits due to channel

depolarization or Eavesdropping. In practice, however, post-processing

reconciliation protocols reveal
1

𝑓
(ℎ(QBER)) for error-correction, where 𝑓 is the

reconciliation efficiency factor and is less than 1. Expanding on its physical meaning,

when
1

𝑓
(ℎ(QBER))is multiplied by length of the sifted key, the result denotes the

number of bits that are expected to be leaked in the post-processing schemes to obtain

an error-free secret key. For an input target secret-key rate𝑘tr lower than 𝑘thlower

bound of reconciliation efficiency𝑓lb is calculated according to (14); if and only if

the researcher’s input conditions satisfy the lower bound of security formulated in

(12) at the first place. The researcher is then able to take the reciprocal of our𝑓lb,and

use the results in [17] to see which reconciliation protocol satisfies it and thus could

be implemented along with his setup. If the researcher’s 𝑘tr is greater than 𝑘th

EnQuad computes and reports the 𝑝 that could achieve 𝑘th almost greater than his

𝑘tr

 𝑘th = ℎ [
1

2
− 𝑞e] − ℎ(QBER)

 𝑘tr = ℎ [
1

2
− 𝑞e] −

1

𝑓lb
(ℎ(QBER))

6. EnQuad simulation results

6.1. EnQuad verification

EnQuad QBER is calculated as the ratio of the unmatched bits in the sifted keys at

the hand of Alice and Bob. EnQuad QBER is validated against the QBER of

simulator in [8], where QBER was captured by Getdata Graph Digitizer software

from their plot, and against the theoretical QBER at the same conditions: channel

depolarization effect is disabled (i.e., 𝑝 is set to zero) since it was not implemented

there; number of sent photons is also set to be 1000, which is their maximum, to

reduce QBER fluctuation as much as possible; Eve attack level 𝜀is varied from 0 to

1 with a step of 0.1. Results are depicted in Fig. 2. In order to examine the utility of

the proposed simulator with respect to the corresponding in literature, the QBER is

calculated versus Eve attack level using various number of photons (Fig. 3). It can be

observed that the deviation from the theoretical limit tends to minimum by increasing

the number of simulated photons in the system (Fig. 4). Over and above, for the same

number of photons, 1K photons, our simulation platform shows better (i.e., lower)

deviation with respect to literature.

 30

Fig. 2. EnQuad Validation: Plot of QBER with different Eve attack levels

Fig. 3. EnQuad Validation: Plot of QBER with different number of photons

Fig. 4. QBER deviation from theoretical values for various number of photons

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
B

E
R

Eve attack level

EnQuad 1k Theoritical Simulator in [8]

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
B

E
R

Eve attack level

1k 10k 100k 1M Theoritical

0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ev

ia
ti

o
n

Eve attack level

1K 10K 100K 1M Simulator in [8]

 31

6.2. Speed evaluation

Compressing the full behaviour of the depolarizing channel and the polarization

modulator in the receiver from computationally-intense matrices operations to only

four statements, as demonstrated in Section 4, greatly reflected on EnQuad speed; we

choose the name EnQuad as an acronym for Encryption in 4 statements. Despite the

fact that EnQuad considers channel depolarization effect while work in [8] does not,

experiments showed a faster simulation by 6.12× to 12.2×. We could not compare

our speed with the simulator in [7] because it is not publicly available and no speed

results are reported. Furthermore, we found work in [6] not comparable, since it is a

visualization project of basic principles for students with no interest in speed.

Simulation time is defined as the time taken to compute the sifted key from the

moment the researcher enters his input conditions and the run button is hit. We chose

sifting as the termination phase since it is the last common phase between our work

and work in [8]. More clearly, after sifting, EnQuad computes mutual information

between Alice, Bob and Eve, then runs a security test, then reports the lower bound

of reconciliation efficiency at the researcher’s input conditions to reach a target key-

rate and recommends changes in the input conditions when the target key-rate is not

achievable. However, simulator in [8] directly runs a predetermined reconciliation

protocol and output the key rate. Thus, the processes after sifting in the two simulators

are uncorrelated.

Table 2. Comparison of simulation time with varying number of input photons and Eve’s attack levels

Number of input

photons

Eve’s attack

level

Simulator in [8]

elapsed time (s)

EnQuad elapsed

time (s)

Speed up

500 0 0.94 0.086 10.9×

600 0 1.20 0.098 12.2×

700 0 1.19 0.114 10.4×

800 0 1.27 0.154 8.24×

900 0 1.31 0.145 9.03×

1000 0 1.41 0.176 6.47×

1000 0.2 1.40 0.173 8.10×

1000 0.4 1.49 0.193 7.72×

1000 0.6 1.53 0.201 6.12×

1000 0.8 1.62 0.216 7.50×

1000 1 1.76 0.222 7.92×

As to the method used in recording our simulation time, we used tic-toc: a built-

in MATLAB function that measures the amount of time for a script included within

tic-toc keywords and reports time in seconds. As to recording simulation time for

work in [8], the simulator type is set to sifting and JMeter™ was used: a desktop Java

software designed to measure the performance of web applications. Since simulation

time might depend on the CPU usage at the time of simulation in our case and since

it might depend on web traffic in the work we are comparing against, we repeated

each experiment, of same conditions, 5 times each separated by 30 seconds and took

the average. In the first set of experiments, we disabled Eve’s attack and incremented

the number of input photons by 100. Since their allowable range of number of input

photons is from 500 to 1000, we end up with six experiments. In the second set of

 32

experiments, we kept the number of input photons constant at 500 and incremented

Eve’s attack level from 0.2 to 1 by a step of 0.2, thus, we end up with another five

experiments. In all experiments, we disabled the channel depolarization effect as it is

not currently considered in their simulation. Average simulation time for each

experiment at the aforementioned conditions are reported in Table 2.

6.3. Security and reconciliation

Following Subsections, 5.2. Lower bound of security, and 5.3. Lower bound of

reconciliation efficiency, we report EnQuad results of a set of scenarios as listed in

Table 3. Number of input photons is set to 10,000 in all combinations of input

conditions (𝑝 and 𝜀). 𝑆denotes the security testing. EnQuad reports Yes when 𝑆lbis

satisfied (i.e., 𝐼(𝒜; ℬ) exceeds 𝐼(𝒜; ℰ)), and No otherwise. 𝑅 is the recommendation

that EnQuad gives to the researcher when𝑆lb is not satisfied or his/her target key-rate

𝑘tr is not achievable (i.e., 𝑘tr is larger than 𝑘th) at his/her input conditions. 𝐿 denotes

the maximum allowable number of bits to be disclosed in the post-processing

schemes to obtain 𝑘tr, and is calculated as
1

𝑓lb
(ℎ(QBER)) multiplied by the length of

the sifted key. 𝑓lb or 𝐿 helps the researcher with the selection of a reconciliation

protocol that could achieve his/her 𝑘trat his input conditions.

Table 3. EnQuad security and reconciliation results in different depolarizing parameters and Eve’s attack

levels

𝑝 𝜀 𝑆 𝑘th 𝑘tr 𝑓lb 𝐿bits) 𝑅

0.1 0.5 Yes 0.185 0.173 0.98 3901 —

0.2 0.9 No — — — —
𝑝should be

0.068 at max to

satisfy security

0.15 0.6 Yes 0.065 0.1 — —

𝑝 should be

0.123 at max to

achieve 𝑘tr

0.01 0.1 Yes 0.767 0.75 0.93 1246 —

7. Conclusion

In this work, we presented a publicly-available simulator to accelerate the demanding

process of designing quantum key distribution setups with target secret-key rates.

EnQuad outperforms available simulators in both speed, with an improvement of

more than an order of magnitude, and built-in features. It offers security tests,

recommendation on reconciliation protocols choice and guidance on lower/higher

bounds of significant parameters such as the depolarizing channel parameter, number

of input photons and Eve’s attack level, for a target secret-key rate. EnQuad also

reports insightful outputs such as QBER, theoretical secret-key rates, mutual

information between Alice and Bob or Alice and Eve and the expected number of

bits to be leaked in the post-processing schemes. What’s more, EnQuad was validated

against a comparable simulator and against theory where clear accordance was shown

and closer values to theory were achieved. Since EnQuad source code was built with

 33

modularity and well-defined interfaces in mind, we believe that it has the potential to

be continually expanded with the aim of realizing a QKD simulator that could act as

a universal counsel for Quantum Cryptography development community.

Appendix. How to use and expand enquad

EnQuad was built in nine MATLAB functions, including the main, with clear

interfaces. In Table 4, the parameters of all interfaces are numbered and their

allowable values are listed. To follow, Table 4 lists which parameter belongs to which

function, and whether it is an input to or an output from this function.

Table 4. EnQuad parameters

No Parameter name Allowable values

1 Number of photons Real positive integer

2 Key bits 1D array of zeros/ones

3 Alice basis selection 1D array of zeros/ones

4 Alice polarized photons states 1D array of 1/2/3/4

5 Eve’s attack level Real positive number from 0 to 1

6 Photons states after Eve’s attack 1D array of 1/2/3/4

7 Channel depolarization probability
Real positive number between 0 and

0.25

8 Photons states after channel 1D array of 1/2/3/4

9 Bob basis selection 1D array of zeros/ones

10 Photon states after beam splitter 1D array of 1/2/3/4

11
Alice photos states after polarizing beam

splitter
1D array of 1/2/3/4

12 Measured bits 1D array of zeros/ones

13 Alice sifted key 1D array of zeros/ones

14 Bob sifted key 1D array of zeros/ones

15 QBER Real positive number from 0 to 1

16 Simulation time Real positive number

17 Theoretical key rate Real positive number from 0 to 1

18 Target key rate Real positive number from 0 to 1

19 Mutual information between Alice and Bob Real positive number from 0 to 1

20 Mutual information between Alice and Eve Real positive number from 0 to 1

21 Security Decision Text

22
Lower bound of reconciliation efficiency for a

target key rate
Real positive number from 0 to 1

23

Recommendation on depolarizing channel

parameter change to achieve security (if not

already satisfied)

Text

24

Recommendation on depolarizing channel

parameter change to achieve target key rate (if

not already achievable)

Text

Parameters number 1, 2, 3, 5, 7 and 9 are the inputs to EnQuad. Parameters

number 15, 16 and 17 are the outputs of EnQuad. All parameters are accessible and

tuneable. Furthermore, as to expanding EnQuad to a wide range of QKD protocols or

 34

BB84 variants, EnQuad was built with keeping modularity in our mind, in the sense

that all functions listed in Table 5 were implemented separately and independently.

In other words, functions speak with each other only through interfaces. This means

that the code of any function could be safely edited/replaced as per the developers’

prospective QKD setups/protocols (see Section 3. EnQuad settings), with EnQuad

still perfectly working as long as the interfaces are adjusted accordingly. While

EnQuad started with the de-facto standards of a QKD protocol, impersonated in

BB84, we seek for including more scenarios for each function, to expand EnQuad

usability to BB84 variants such as Decoy-state protocol, SARG04 protocol in

addition to the quantum entanglement and Bell’s inequality-based protocols [23, 24].

With EnQuad parameters and functions listed, a quick live demo is provided in [10].

Table 5. EnQuad functions

No Function
Interface

Input Output

1 EnQuad Main 1, 5, 7

16, 17,18,

19, 20, 21,

22, 23, 24

2 Polarizer 1, 2, 3 4

3 Eve’s Intercept and Resend 1, 4, 5 6

4 Channel 1, 4/6, 7 8

5 Beam Splitter 8, 9 10

6 Polarizing Beam Splitter 1, 10 11

7 SPAD 11 12

8 Sifting 2, 3, 9 13, 14, 15

9

Security Testing and

Reconciliation Efficiency

Reporting

1, 5, 7,

13

17, 18, 19,

20, 21, 22,

23, 24

R e f e r e n c e s

1. G i s i n, N., et al. Quantum Cryptography. – Reviews of Modern Physics,Vol. 74, 2002, No 1,

p. 145.

2. C h o u, Y.-H., et al. Quantum Entanglement and Non-Locality Based Secure Computation for

Future Communication. – IET Information Security, Vol. 5, 2011, No 1, pp. 69-79.

3. H a n s c h k e, L., et al. Quantum Dot Single-Photon Sources with Ultra-Low Multi-Photon

Probability. – NPJ Quantum Information, Vol. 4, 2018, No 1, p. 43.

4. S i b s o n, P., et al. Chip-Based Quantum Key Distribution. – Nature Communications, Vol. 8, 2017,

p. 13984.

5. L i a o, S.-K., et al. Satellite-Relayed Intercontinental Quantum Network. – Physical Review Letters,

Vol. 120, 2018, No 3, p. 030501.

6. K o h n l e, A., A. R i z z o l i. Interactive Simulations for Quantum Key Distribution. – European

Journal of Physics, Vol. 38, 2017, No 3, p. 035403.

7. N i e m i e c, M., Ł. R o m a ń s k i, M. Ś w i ę t y. Quantum Cryptography Protocol Simulator. –

In: International Conference on Multimedia Communications, Services and Security, 2011,

Springer.

8. A t a s h p e n d a r, A., P. R y a n. Simulation and Analysis of QKD (BB84). – Interdisciplinary

Center for Security, University of Luxembourg, 2014-2019.

https://www.qkdsimulator.com/

9. S c a r a n i, V., R. R e n n e r. Quantum Cryptography with Finite Resources: Unconditional Security

Bound for Discrete-Variable Protocols with One-Way Postprocessing. – Physical Review

Letters, Vol. 100, 2008, No 20, p. 200501.

 35

10. A b d e l g a w a d, M. Github EnQuad Repository. 2019.

https://github.com/Mo-Abdelgawad/EnQuad-a-QKD-Simulator

11. D i f f i e, W., M. H e l l m a n. New Directions in Cryptography. – IEEE Transactions on

Information Theory, Vol. 22, 1976, No 6, pp. 644-654.

12. S c a r a n i, V., et al. Quantum Cryptography Protocols Robust against Photon Number Splitting

Attacks for Weak Laser Pulse Implementations. – Physical Review Letters, Vol. 92, 2004,

No 5, 057901.

13. L o, H.-K., X. M a, K. C h e n. Decoy State Quantum Key Distribution. – Physical Review Letters,

Vol. 94, 2005, No 23, 230504.

14. J e o n g, Y.-C., Y.-S. K i m, Y.-H. K i m. Effects of Depolarizing Quantum Channels on BB84 and

SARG04 Quantum Cryptography Protocols. – Laser Physics, Vol. 21, 2011, No 8,

pp. 1438-1442.

15. N i e d e r b e r g e r, A., V. S c a r a n i, N. G i s i n. Photon-Number-Splitting Versus Cloning

Attacks in Practical Implementations of the Bennett-Brassard 1984 Protocol for Quantum

Cryptography. – Physical Review A, Vol. 71, 2005, No 4, 042316.

16. L i z a m a-P é r e z, L., J. L ó p e z, E. D e C a r l o s L ó p e z. Quantum Key Distribution in the

Presence of the Intercept-Resend with Faked States Attack. – Entropy, Vol. 19, 2017, No 1,

p. 4.

17. E l k o u s s, D., et al. Efficient Reconciliation Protocol for Discrete-Variable Quantum Key

Distribution. – In: 2009 IEEE International Symposium on Information Theory, 2009, IEEE.

18. B e n l e t a i e f, N., H. R e z i g, A. B o u a l l e g u e. Toward Efficient Quantum Key Distribution

Reconciliation. – Journal of Quantum Information Science, Vol. 4, 2014, No 2, p. 117.

19. K e r n, O., J. M. R e n e s. Improved One-Way Rates for BB84 and 6-State Protocols. –

arXiv preprint arXiv:0712.1494, 2007.

20. M e h i c, M., M. N i e m i e c, M. V o z n a k. Calculation of the Key Length for Quantum Key

Distribution. – Elektronika i Elektrotechnika, Vol. 21, 2015, No 6, pp. 81-85.

21. G o t t e s m a n, D., H.-K. L o. Proof of Security of Quantum Key Distribution with Two-Way

Classical Communications. – IEEE Transactions on Information Theory, Vol. 49, 2003, No 2,

pp. 457-475.

22. S m i t h, G., J. A. S m o l i n. Additive Extensions of a Quantum Channel. – In: Information Theory

Workshop, 2008 (ITW’08), IEEE, 2008.

23. E k e r t, A. K. Quantum Cryptography Based on Bell’s Theorem. – Physical Review Letters,

Vol. 67, 1991, No 6, p. 661.

24. H w a n g, T., K.-C. L e e. EPR Quantum Key Distribution Protocols with Potential 100% Qubit

Efficiency. – IET Information Security, Vol. 1, 2007, No 1, pp. 43-45.

Received: 15.10.2019; Second Version: 01.01.2020; Accepted: 06.01.2020 (fast track)

