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Abstract: In this paper, we present EnQuad version 1.0: a high-speed and 

expandable simulator for Quantum Key Distribution (QKD) protocols. Surpassing 

available simulators, EnQuad does not only simulate a QKD stack, but also does 

security testing and guides the researcher on which reconciliation protocol should 

be used in his experimental setup. On the top of that, it recommends changes for the 

researcher to satisfy security or a given target key-rate if any of them is not already 

fulfilled. Although EnQuad V1.0 is concerned with depolarizing channels and 

Individual Intercept-and-Resend attacks, EnQuad is featured with 24 parameters and 

9 modular functions so that it could be expanded to a wide range of QKD protocols. 

In addition, we validated EnQuad outcomes against a comparable simulator and 

against theory. Furthermore, a set of 11 experiments showed that EnQuad runs 6.12× 

to 12.2× faster than a comparable simulator. EnQuad was implemented in MATLAB 

and the code is available online. 

Keywords: QKD simulators, Information Security, Quantum Cryptography, 

Scientific Computations, Software Technologies.  

1. Introduction  

Classical cryptographic protocols that are being deployed at this moment for secure 

data communication are highly threatened to get broken by quantum computers, once 

built on a large scale. Quantum cryptography came as a promising substitute to 

provide unconditional security based on ever-sustainable laws of quantum physics 

such as Heisenberg’s uncertainty principle and no-cloning theorem [1]. 

Quantum cryptographic protocols employ Quantum Key Distribution (QKD) 

schemes based on photon polarization or electron spin encoding [2]. A secret random 

key is shared between two parties, usually known as Alice and Bob, with immunity 

against Eavesdropper’s (Eve attacks). However, both performances, impersonated in 

the secret-key rates, and security of QKD protocols heavily depend on numerous 
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critical system parameters such as input number of photons, channel noise 

type/quantity, Eve attack method/level and source/detector imperfections [3]. As 

such, a researcher might go into arduous experimental work before knowing which 

combinations/lower-or-higher bounds of those parameters could achieve his target 

key-bitrate in real life [4, 5]. Consequently, QKD simulators stand as urgent tools to 

increase the pace of QKD deployment and to guide the researcher on the parameters 

values that work best in his conditions, and on the choice of sub-protocols in order to 

satisfy security and target performance. 

A few works have developed QKD simulators [6-8]. However,  the simulator in 

[6] was built as a part of quantum mechanics visualization project for the  

undergraduate levels. Its target was to visualize basic principles rather than 

performance analysis or security requirements reporting. In [8], the simulator does 

not currently include the quantum channel noise, which is a serious drawback since 

it heavily reflects on the estimated secret-key rates and plays a profound role in the 

protocol security. Furthermore, the number of input pulses is limited to only 1000, 

leading to finite-size overheads [9]. Work in [7] is not publicly-available. To add, it 

does neither tell the researcher how to reach his target secret-key rates nor give 

information about the question of security violation/satisfaction at the researcher’s 

input conditions.  

In this paper, we present EnQuad V1.0: a publicly-accessible simulator for QKD 

protocols, where the code is given in [10]. The contributions of this work are as 

follows: first, we considered depolarizing channel effect, Individual Eve Intercept-

and-Resend attacks and number of input photons as controllable variables that 

developers can change according to their prospective setups. Second, EnQuad does 

not only output figure-of-merit parameters such as Quantum Bit Error Rate (QBER) 

and secret-key rates, it also guides the researcher through which system parameters 

he should use to satisfy security and to reach his target key-rate. This saves arduous 

experimental work. Third, we compressed full behaviour of the depolarizing channel 

and the polarization modulator in the receiver from intensive matrices operations to 

only 4 statements. That reflected on speeding up the simulation time 6.12× to 12.2× 

compared to work in [8]. This speedup is of high importance, especially when the 

number of input photons are scaled to hundreds of thousands. Finally, EnQuad, unlike 

all other simulators, is featured with modularity, in the sense that all parts were 

implemented separately/independently with clear interfaces (sets of well-defined 

variables). This greatly helps EnQuad to seamlessly embrace a wide range of 

prospective QKD setups/protocols. 

The rest of this paper is organized as follows: first, we briefly describe “BB84”: 

the most widely known QKD protocol, developed by H. Bennett and G. Brassard in 

1984 (see [3]), second, we explain the settings of EnQuad V1.0, where it lies in the 

much larger picture of Quantum Cryptography and its expansion opportunities; 

fourth, we elaborate on our simulation model and how we compressed the description 

of complex parts into a few statements which heavily contributed to EnQuad speed; 

fifth, we validate EnQuad QBER outcome against previous work and against 

theoretical formulas in variant conditions, also, we demonstrate how EnQuad guides 

the researcher to achieve security and target-key rates; finally, we run multiple 
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experiments to test the speed of EnQuad against another accessible simulator and 

show EnQuad results in a set of scenarios. We further guide the reader through how 

to use EnQuad in Appendix. 

2. BB84  

As any communication system, BB84 is mainly composed of a transmitter, a channel 

and a receiver. At the transmitter side, Alice sends a stream of pulses, one at a time. 

The pulse should be generated by a Single-Photon Source (SPS). Each pulse gets 

individually polarized by one of two mutually non-orthogonal bases: rectilinear (+) 

or diagonal (×). If (+) basis is selected, key bit 0 is encoded as horizontally-polarized 

pulse with state vector of |0º〉 and key bit 1 is encoded as vertically-polarized |90º〉. If 
(×) basis is selected, key bit 0 is encoded as circular-right polarized pulse with state 

vector of |45º〉 and key bit 1 is encoded as circular-left | –45º〉. This is practically done 

by a polarization modulator controlled by bases selector and key bits generator as 

depicted in Fig. 1. The pulses stream goes through the quantum channel that could be 

fiber or free-space. The channel might be an amplitude-damping channel, a phase-

damping channel or a depolarizing channel.   

At the receiver side, Bob decodes the received pulses by measuring their 

polarization states. Alice and Bob then reveal their bases choices and discard the bits 

that were measured with unmatched based. The measurement setup is practically 

achieved by a polarization modulator followed by a Polarizing Beam Splitter (PBS) 

and two single photon detectors (SPD0 and SPD1) [11], as shown in Fig. 1. The 

remaining key after discarding the bits corresponding to unmatched bases is called 

the sifted key. Alice and Bob then undergo classical post-processing schemes: 

reconciliation followed by privacy amplification. Reconciliation is to correct the 

erroneous key bits as a result of channel noise or Eve attacks. The error rate in the 

sifted key is called Quantum Bit Error Rate (QBER). Privacy amplification is then 

applied where further key bits are discarded to maximize security against the 

information that Eve has gained from the bits that have been revealed during data 

reconciliation. The remaining key at the disposal of Alice/Bob is called the secret 

key. The ratio between length of the sifted key and that of the secret key is defined as 

secret-key bit rate k, which is of a great interest to the QKD development community. 

 
Fig. 1. Schematic of an experimental BB84 setup:  Polarizing Beam Splitter (PBS), Single Photon 

Source/ Single Photon Detector (SPS/SPD) and polarization modulator 
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3. EnQuad settings 

3.1. Why BB84? 

In QKD literature, there is a myriad of QKD protocols as variations around BB84, 

including but not limited to, SARG04 [12] and Decoy-state Protocol [13]. Since 

BB84 and its variants are the most proven to be secure and the most targeted forms 

of quantum cryptography to be experimentally implemented, it is useful to offer a 

simulator with its core coded as per BB84. Exploiting EnQuad modularity, explained 

in How to use and expand EnQuad, we strongly believe that it could be extended in 

future releases to include SARG04 and Decoy-state protocols that are arguably more 

practical and higher secret-key rate achievers against certain attacks.  

3.2. Source and detector 

In EnQuad, a single-photon source (SPS) was employed since it is a critical key for 

the security of BB84. A single-photon source prevents Eve from applying Photon 

Number Splitting (PNS) attack (see [12] for details), which compromises the 

unconditional security of BB84. We also employ a single-photon detector with no 

dark counts. Nonetheless, when expanding EnQuad to SARG04 and Decoy-state 

protocols in future releases, it would be safe and sensible to include a multi-photon 

source (faint laser) and the dark-count rate; since such protocols were primarily built 

to maintain unconditional security against such imperfections. 

3.3. Channel noise and eavesdropping 

We implemented a depolarizing channel: a channel that introduces a bit-flip error or 

a phase-flip error or both, at equal probabilities. Depolarization is an important type 

of quantum noise that arises in free-space due to weather change and in optical fiber 

due to the phase changes along the channel [14]. The overall noise exclusively 

depends on the depolarizing parameter 𝑝. As for Eve, she has different strategies of 

attack to listen in on Alice’s sent key, including Intercept-and-Resend, PNS, cloning 

[15], and faked-states attacks [16]. In Version 1.0 of EnQuad, we implement a 

combination of individual Intercept-and-Resend attacks where Eve measures the on-

going pulses, one after another, with the same types of bases available at Alice/Bob 

side ((×) or (+)). We also define a parameter called attack level ɛ representing the 

ratio of pulses to be attacked. In practice, channel noise and Eavesdropping are 

eminent challenges to secret-key bit rate 𝑘 and QKD security. EnQuad tells the 

researcher whether his inputs 𝑝 and 𝜀 satisfy the lower bound of security 𝑆lb based 

on Shannon mutual information between Alice and Bob and Alice and Eve in our 

settings. If his input conditions violate 𝑆lb, EnQuad tells the researcher how much 𝑝  

need to change (since the researcher usually has no control on  𝜀). In this way, we are 

assisting him to pick the suitable channel for his experimental setup.  
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3.4. Reconciliation and privacy amplification 

Instead of reinventing the wheel and re-implementing available classical 

reconciliation and privacy amplification schemes that have been relentlessly 

researched in a plethora of studies [17-21], we took a reverse approach. We apply our 

settings to the Shannon mutual information between Alice, Bob, and Eve, from which 

it is possible to tell the researcher the theoretical secret-key bit rate 𝑘th at its input 

conditions. Based on which, EnQuad tells the researcher the lower bound of the 

efficiency 𝑓lb of the post-processing schemes required to reach his target secret-key 

bit rate 𝑘tr. Afterwards, the researcher could make use of the results in [17] to select 

the scheme suitable for his physical experiment based on our reported 𝑓lb. If there is 

yet no scheme to satisfy the 𝑓lb at the researcher’s input conditions, then we are 

basically setting the standards for the yet-to-be-developed post-processing schemes 

required to realize QKD protocols in real-life at the conditions of interest. 

4. EnQuad simulation model 

At the transmitter side, the bases selector and the key bits generator are simulated as 

two uniformly-distributed pseudorandom generators. The built-in MATLAB 

function rand, with the Mersenne twister set as the default generator, was used to 

generate uniformly-distributed pseudorandom numbers in the interval (0, 1). 

Outcomes are then rounded using round, another built-in MATLAB function, that 

rounds to the nearest integer. This how uniformly-distributed random binary bits for 

the two generators are produced. The first randomly selects bases by setting 0 for (+) 

basis and 1 for (×) basis, and the second generates the bits of the key to be sent. Basis 

selection and key bits are passed to four if-else cases with output of 1, 2, 3 and 4 

representing |0º〉, |90º〉, |45º〉 and |–45º〉, respectively. Since the inputs to the four  

if-else cases are uniformly distributed, the output states are also uniformly 

distributed. 

As for the channel, the depolarizing channel model is given by [22] (see the next 

equations (1)-(6)): in (1), where  denotes the density matrix of the original 

polarization state, i.e., before the channel, and  is the output density matrix after 

being depolarized by the channel; 1 is the matrix responsible for bit-flip-error; 𝜎2 is 

the one responsible for phase-flip error and 3  is doing both errors, all with equal 

probabilities 
𝑝

3
 and are defined in (2). To follow, the density matrix 𝜌 could be 

computed as in (3), where θ is the angle from the reference state, which in our case 

is the |0º〉. Thus, 𝜌 of a given polarization state before the channel can be computed 

as in (4). When substituting θ = 0º, 90º, 45º and –45º in (4),  𝜌 of the four polarization 

states are found as in (5). When substituted in (1), we get 𝜌′(𝑝) for each state as in 

(6): 

(1) 𝜌′(𝑝) = (1 − 𝑝)𝜌 +
𝑝

3
𝜎1𝜌𝜎1 +

𝑝

3
𝜎2𝜌𝜎2 +

𝑝

3
𝜎3𝜌𝜎3, 

(2) 𝜎1 = [
0 1
1 0

] ,  𝜎2 = [
0 −𝑖
𝑖 0

] ,   𝜎3 = [
1 0
 0 1

],  
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(3) 𝜌 = |𝜓⟩⟨𝜓|; |𝜓⟩ = [
cos 𝜃
 sin 𝜃

] , 〈𝜓| = [ cos𝜃 sin𝜃 ]

(4) 𝜌 = |𝜓⟩⟨𝜓| = [ cos2𝜃 cos𝜃sin𝜃
sin𝜃cos𝜃 sin2𝜃

], 

(5)      𝜌0 = [ 
1 0
0 0

] , 𝜌90 = [
0 0 
0 1

] , 𝜌45 =
1

2
[
1 1 
1 1

] ,  𝜌−45 =
1

2
[ 

1 −1
−1 1

]

(6) 

𝜌0
′ (𝑝) = (

1 −
2𝑝

3
0

0
2𝑝

3

) , 𝜌90
′ (𝑝) = (

2𝑝

3
0

0 1 −
2𝑝

3

),  

  𝜌45
′ (𝑝) =

1

2
(

1 1 −
2𝑝

3

1 −
2𝑝

3
1

) , 𝜌−45
′ (𝑝) =

1

2
(

1 −1 +
2𝑝

3

−1 +
2𝑝

3
1

).

As for the receiver, a received photon has four measurement outcomes with 

probabilities depending on 𝑝 and on the basis selected. To see how probabilities are 

calculated, a photon with 𝜌0
′  is considered. In case the (+) basis is selected for 

measurement, 𝜌0  and 𝜌90 are possible outcomes. The probability of the correct 

outcome 𝑃(𝜌0 )  is calculated in (7) where 𝑇𝑟(𝜌) is the trace of matrix 𝜌. Similarly, 

the probability of the incorrect outcome is calculated in (8). It is useful to observe 

that in case of an ideal channel, 𝑃(𝜌0) = 1, and 𝑃(𝜌90) = 0.  In case the (×) basis is 

selected 𝑃(𝜌45) and 𝑃(𝜌−45) are calculated in (9). 

 𝑃(𝜌0) = Tr{𝜌0
′ 𝜌0} = 1 −

2𝑝

3
 

 𝑃(𝜌90) = Tr{𝜌0
′ 𝜌90} =

2𝑝

3


 𝑃(𝜌45) = Tr{𝜌0
′ 𝜌45} =

1

2
 , 𝑃(𝜌−45) = Tr{𝜌0

′
 
𝜌−45} =

1

2


After calculating the measurement outcomes probabilities for the other three 

states (𝜌90
′ , 𝜌45

′  and 𝜌−45
′ ), we found they are completely analogous with same 

probabilities, yet with different sequence as shown in Table 1. That is how we 

compressed the full behavior of the depolarizing channel and the polarizing 

modulator in the receiver from computationally-intense matrices operations to only 

four statements, which positively contributes to the simulator speed. In our simulator, 

each state is represented by the corresponding four outcomes probabilities in a 1D 

vector. According to the basis selected for measurement, only two outcomes’ 

probabilities are selected, then passed to a random binary generator with non-uniform 

distribution that is controlled by those two probabilities to generate bit 0 or 1 

representing the decoded bit.  

 

 



 27 

Table 1. Probability of measurement outcomes for the four possible states of the received photon 

Received photon 

state 

Measurement with (+)  basis Measurement with (×)  basis 

Probabilities 

𝑃(𝜌0) 𝑃(𝜌90) 𝑃(𝜌45) 𝑃(𝜌−45) 

𝜌0
′  1 −

2𝑝

3
 

2𝑝

3
 0.5 0.5 

𝜌90
′  

2𝑝

3
 1 −

2𝑝

3
 0.5 0.5 

𝜌45
′  0.5 0.5 1 −

2𝑝

3
 

2𝑝

3
 

𝜌−45
′  0.5 0.5 

2𝑝

3
 1 −

2𝑝

3
 

5. QKD QBER, security and reconciliation in EnQuad 

5.1. QBER 

The transition (error) probability in the channel 𝑞ch could be seen from Table 1 as 

2𝑝/3 , where 𝑝 is the channel depolarizing parameter.  QBER is the error ratio in the 

sifted key due to channel and Eve. Transition probability at Bob side due to the Eve 

Intercept-Resend 𝑞e is known as 𝜀/4 [1], where 𝜀 is the attack level defined as ratio 

of the number of pulses to be attacked over the number of input pulses.  𝜀/4 comes 

from the fact that Eve has no idea about the polarization states sent by Alice, thus, 

Eve inevitably intercept and resend a pulse in an incorrect (unmatched with Alice) 

measurement basis 50% of the time. When Bob receives a pulse incompatible with 

his measurement base (turns to be matched with Alice after sifting), then the bit is 

also decoded incorrectly 50% of the time, introducing a total of 50% × 50% = 25% 

error in Bob’s decoded bits. Though, Eve may not intercept-resend all the input 

pulses, she may select a number of pulses to attack, which is represented by 𝜺, if, 
however, she chooses to attack all pulses, 𝜺turns to be 1 and 1/4 of the sifted key 

will be erroneous. QBER could be calculated given 𝑞ch  and 𝑞e. Since the channel is 

binary symmetric, the overall transition probability of a bit starting from Alice source 

to Bob detector going through Eve followed by the channel (also regarded as the error 

probability in the sifted key) is calculated by the next equation: 


QBER =   𝑞e(1 − 𝑞ch) + (1 − 𝑞e)𝑞ch =  

𝜀

4
[ 1 −

2𝑝

3
 ] + [ 1 −

𝜀

4
 ]

2𝑝

3
=

=  
𝜀

4
+

2𝑝

3
(2 − 𝜺).

Without the presence of Eve, QBER turns to be equal 𝑞ch . In practice, 𝑞ch that 

is estimated beforehand is the threshold revealing the presence of Eve. In the 

reconciliation process, QBER is estimated over a randomly-permuted part of the 
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sifted key, if the estimated QBER largely exceeds 𝑞ch, the QKD protocol may be 

aborted and re-run. If QBER exceeds 𝑞ch with a tolerable amount (still satisfies the 

lower bound of security to be discussed below), Alice and Bob may proceed to post-

processing schemes to correct the errors in the sifted key and minimize Eve 

information. As such, QBER is a critical parameter in QKD protocol security 

analysis. EnQuad computes QBER at the researcher’s input conditions as the ratio of 

errors in the sifted key. In QBER verification, EnQuad QBER is compared with 

QBER resulted from simulator in [8] at the same conditions, and the theoretical  

QBER in (10) at such conditions. 

5.2. Lower bound of security  

A QKD protocol is secured as long as the mutual information between Alice and Bob 

𝐼(𝒜; ℬ) is greater than the mutual information between Alice and Eve 𝐼(𝒜; ℰ) as 

stated in (11). Since we are studying a memoryless symmetric source with alphabet 

𝒜 = {𝑎0, 𝑎1} = {0, 1} then 𝑝(𝑎0) = 𝑝(𝑎1) = 1 2⁄  and the entropy of the source 

𝐻(𝒜) is at its maximum: 𝐻(𝒜) = 1. In addition, since we are dealing with a binary 

symmetric channel where conditional  probabilities 𝑝(𝑎0|𝑎1) = 𝑝(𝑎1|𝑎0) and 

𝑝(𝑎0|𝑎0) = 𝑝(𝑎1|𝑎1) then  conditional entropies 𝐻(𝒜|ℬ) and 𝐻(𝒜|ℰ) are equal to 

1 − ℎ(𝛼) where ℎ(𝛼) is the Shannon binary entropy with transition probability 

𝛼: ℎ(𝛼) =  −𝛼log2𝛼 − (1 − 𝛼) log2(1 − 𝛼). In the case of communication between 

Alice and Bob, 𝛼 is actually the QBER calculated in (1). In the case of Eve attacking 

Alice, 𝛼 is defined as (
1

2
− 𝑞e). Accordingly, the lower bound of security in (11) can 

be reformulated as per our settings as in (12). Note that it is valid to say  

QBER < (
1

2
− 𝑞e) ifℎ(QBER) < ℎ (

1

2
− 𝑞e)as long as QBER ≤ 0.5 and  

(
1

2
− 𝑞e) ≤ 0.5, which is true in our case. The maximum of (

1

2
− 𝑞e) is 0.5 that’s 

when there is no Eve’s attack; QBER also cannot exceed 0.5 since the depolarization 

parameter𝑝 is limited to 0.25 for usable channels [22]. 

 𝑆lb ∶   (𝐼(𝒜; ℬ) = 𝐻(𝒜) − 𝐻(𝒜|ℬ)) >(𝐼(𝒜; ℰ) = 𝐻(𝒜) − 𝐻(𝒜|ℰ))


𝑆lb ∶   (1 − ℎ(QBER)) > (1 − ℎ [

1

2
− 𝑞e ]) ∶   ℎ(QBER) < ℎ [

1

2
− 𝑞e ]

: QBER <   [
1

2
− 𝑞e]  ∶  [

𝜀

4
+

2𝑝

3
(2 − 𝜀)]  < [

1

2
−

𝜀

4
]  ∶ 𝑝 <

4(1−𝜺)

3(2−𝜺)


Based on (12), EnQuad tells the researcher whether his input conditions violate 

the security condition (i.e., he should abort the protocol). Additionally, if the lower 

bound of security can be satisfied by decreasing his channel depolarizing parameter 

𝑝 (which practically means to replace his channel by a lower-𝑝 one), it tells him so 

with how much it should be decreased.  
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5.3. Lower bound of reconciliation efficiency  

The theoretical secret-key rate 𝑘th  is the difference between 𝐼(𝒜; ℬ)and 𝐼(𝒜; ℰ) 

[17]. When we apply our settings, 𝑘th  can be defined as in (13). The quantity 

ℎ(QBER) is actually seen as the Shannon minimum amount of information that Bob 

needs from Alice to correct the errors in his decoded bits due to channel 

depolarization or Eavesdropping. In practice, however, post-processing 

reconciliation protocols reveal 
1

𝑓
(ℎ(QBER)) for error-correction, where 𝑓 is the 

reconciliation efficiency factor and is less than 1. Expanding on its physical meaning, 

when 
1

𝑓
(ℎ(QBER))is multiplied by length of the sifted key, the result denotes the 

number of bits that are expected to be leaked in the post-processing schemes to obtain 

an error-free secret key.  For an input target secret-key rate𝑘tr lower than 𝑘thlower 

bound of reconciliation efficiency𝑓lb is calculated according to (14); if and only if  

the researcher’s input conditions satisfy the lower bound of security formulated in 

(12) at the first place. The researcher is then able to take the reciprocal of our𝑓lb,and 

use the results in [17] to see which reconciliation protocol satisfies it and thus could 

be implemented along with his setup. If the researcher’s 𝑘tr is greater than 𝑘th 

EnQuad computes and reports the 𝑝 that could achieve 𝑘th almost greater than his 

𝑘tr

 𝑘th = ℎ [ 
1

2
− 𝑞e] − ℎ(QBER)

 𝑘tr = ℎ [
1

2
− 𝑞e] −

1

𝑓lb
(ℎ(QBER))

6. EnQuad simulation results 

6.1. EnQuad verification 

EnQuad QBER is calculated as the ratio of the unmatched bits in the sifted keys at 

the hand of Alice and Bob. EnQuad QBER is validated against the QBER of 

simulator in [8], where QBER was captured by Getdata Graph Digitizer software 

from their plot, and against the theoretical QBER at the same conditions: channel 

depolarization effect is disabled (i.e., 𝑝 is set to zero) since it was not implemented 

there; number of sent photons is also set to be 1000, which is their maximum, to 

reduce QBER fluctuation as much as possible; Eve attack level 𝜀is varied from 0 to 

1 with a step of 0.1. Results are depicted in Fig. 2. In order to examine the utility of 

the proposed simulator with respect to the corresponding in literature, the QBER is 

calculated versus Eve attack level using various number of photons (Fig. 3). It can be 

observed that the deviation from the theoretical limit tends to minimum by increasing 

the number of simulated photons in the system (Fig. 4). Over and above, for the same 

number of photons, 1K photons, our simulation platform shows better (i.e., lower) 

deviation with respect to literature.   
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Fig. 2. EnQuad Validation: Plot of QBER with different Eve attack levels 

 

Fig. 3. EnQuad Validation: Plot of QBER with different number of photons 

 
Fig. 4. QBER deviation from theoretical values for various number of photons  
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6.2. Speed evaluation 

Compressing the full behaviour of the depolarizing channel and the polarization 

modulator in the receiver from computationally-intense matrices operations to only 

four statements, as demonstrated in Section 4, greatly reflected on EnQuad speed; we 

choose the name EnQuad as an acronym for Encryption in 4 statements. Despite the 

fact that EnQuad considers channel depolarization effect while work in [8] does not, 

experiments showed a faster simulation by 6.12× to 12.2×. We could not compare 

our speed with the simulator in [7] because it is not publicly available and no speed 

results are reported. Furthermore, we found work in [6] not comparable, since it is a 

visualization project of basic principles for students with no interest in speed. 

Simulation time is defined as the time taken to compute the sifted key from the 

moment the researcher enters his input conditions and the run button is hit. We chose 

sifting as the termination phase since it is the last common phase between our work 

and work in [8]. More clearly, after sifting, EnQuad computes mutual information 

between Alice, Bob and Eve, then runs a security test, then reports the lower bound 

of reconciliation efficiency at the researcher’s input conditions to reach a target key-

rate and recommends changes in the input conditions when the target key-rate is not 

achievable. However, simulator in [8] directly runs a predetermined reconciliation 

protocol and output the key rate. Thus, the processes after sifting in the two simulators 

are uncorrelated.   

Table 2.  Comparison of simulation time with varying number of input photons and Eve’s attack levels 

Number of input 

photons 

Eve’s attack 

level 

Simulator in [8] 

elapsed time (s) 

EnQuad elapsed 

time (s) 

Speed up 

500 0 0.94 0.086 10.9× 

600 0 1.20 0.098 12.2× 

700 0 1.19 0.114 10.4× 

800 0 1.27 0.154 8.24× 

900 0 1.31 0.145 9.03× 

1000 0 1.41 0.176 6.47× 

1000 0.2 1.40 0.173 8.10× 

1000 0.4 1.49 0.193 7.72× 

1000 0.6 1.53 0.201 6.12× 

1000 0.8 1.62 0.216 7.50× 

1000 1 1.76 0.222 7.92× 

 

As to the method used in recording our simulation time, we used tic-toc: a built-

in MATLAB function that measures the amount of time for a script included within 

tic-toc keywords and reports time in seconds. As to recording simulation time for 

work in [8], the simulator type is set to sifting and JMeter™ was used: a desktop Java 

software designed to measure the performance of web applications. Since simulation 

time might depend on the CPU usage at the time of simulation in our case and since 

it might depend on web traffic in the work we are comparing against, we repeated 

each experiment, of same conditions, 5 times each separated by 30 seconds and took 

the average. In the first set of experiments, we disabled Eve’s attack and incremented 

the number of input photons by 100. Since their allowable range of number of input 

photons is from 500 to 1000, we end up with six experiments. In the second set of 
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experiments, we kept the number of input photons constant at 500 and incremented 

Eve’s attack level from 0.2 to 1 by a step of 0.2, thus, we end up with another five 

experiments. In all experiments, we disabled the channel depolarization effect as it is 

not currently considered in their simulation. Average simulation time for each 

experiment at the aforementioned conditions are reported in Table 2.  

6.3. Security and reconciliation  

Following Subsections, 5.2. Lower bound of security, and 5.3. Lower bound of 

reconciliation efficiency, we report EnQuad results of a set of scenarios as listed in 

Table 3. Number of input photons is set to 10,000 in all combinations of input 

conditions (𝑝 and 𝜀). 𝑆denotes the security testing. EnQuad reports Yes when 𝑆lbis 

satisfied (i.e., 𝐼(𝒜; ℬ) exceeds 𝐼(𝒜; ℰ)), and No otherwise. 𝑅 is the recommendation 

that EnQuad gives to the researcher when𝑆lb is not satisfied or his/her target key-rate 

𝑘tr is not achievable (i.e., 𝑘tr is larger than  𝑘th) at his/her input conditions. 𝐿 denotes 

the maximum allowable number of bits to be disclosed in the post-processing 

schemes to obtain 𝑘tr, and is calculated as 
1

𝑓lb
(ℎ(QBER)) multiplied by the length of 

the sifted key. 𝑓lb or 𝐿 helps the researcher with the selection of a reconciliation 

protocol that could achieve his/her 𝑘trat his input conditions. 

Table 3. EnQuad security and reconciliation results in different depolarizing parameters and Eve’s attack 

levels 

𝑝 𝜀 𝑆 𝑘th 𝑘tr 𝑓lb 𝐿bits) 𝑅

0.1 0.5 Yes 0.185 0.173 0.98 3901 — 

0.2 0.9 No — — — — 
𝑝should be 

0.068 at max to 

satisfy security 

0.15 0.6 Yes 0.065 0.1 — — 

𝑝 should be 

0.123 at max to 

achieve  𝑘tr 

0.01 0.1 Yes 0.767 0.75 0.93 1246 — 

7. Conclusion 

In this work, we presented a publicly-available simulator to accelerate the demanding 

process of designing quantum key distribution setups with target secret-key rates. 

EnQuad outperforms available simulators in both speed, with an improvement of 

more than an order of magnitude, and built-in features. It offers security tests, 

recommendation on reconciliation protocols choice and guidance on lower/higher 

bounds of significant parameters such as the depolarizing channel parameter, number 

of input photons and Eve’s attack level, for a target secret-key rate. EnQuad also 

reports insightful outputs such as QBER, theoretical secret-key rates, mutual 

information between Alice and Bob or Alice and Eve and the expected number of 

bits to be leaked in the post-processing schemes. What’s more, EnQuad was validated 

against a comparable simulator and against theory where clear accordance was shown 

and closer values to theory were achieved. Since EnQuad source code was built with 
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modularity and well-defined interfaces in mind, we believe that it has the potential to 

be continually expanded with the aim of realizing a QKD simulator that could act as 

a universal counsel for Quantum Cryptography development community. 

Appendix. How to use and expand enquad 

EnQuad was built in nine MATLAB functions, including the main, with clear 

interfaces. In Table 4, the parameters of all interfaces are numbered and their 

allowable values are listed. To follow, Table 4 lists which parameter belongs to which 

function, and whether it is an input to or an output from this function.  

Table 4. EnQuad parameters 

No Parameter name Allowable values 

1 Number of photons Real positive integer 

2 Key bits 1D array of zeros/ones 

3 Alice basis selection 1D array of zeros/ones 

4 Alice polarized photons states 1D array of 1/2/3/4 

5 Eve’s attack level Real positive number from 0 to 1 

6 Photons states after Eve’s attack 1D array of 1/2/3/4 

7 Channel depolarization probability 
Real positive number between 0 and 

0.25 

8 Photons states after channel 1D array of 1/2/3/4 

9 Bob basis selection 1D array of zeros/ones 

10 Photon states after beam splitter 1D array of 1/2/3/4 

11 
Alice photos states after polarizing beam 

splitter 
1D array of 1/2/3/4 

12 Measured bits 1D array of zeros/ones 

13 Alice sifted key 1D array of zeros/ones 

14 Bob sifted key 1D array of zeros/ones 

15 QBER Real positive number from 0 to 1 

16 Simulation time Real positive number 

17 Theoretical key rate Real positive number from 0 to 1 

18 Target key rate Real positive number from 0 to 1 

19 Mutual information between Alice and Bob Real positive number from 0 to 1 

20 Mutual information between Alice and Eve Real positive number from 0 to 1 

21 Security Decision Text 

22 
Lower bound of reconciliation efficiency for a 

target key rate 
Real positive number from 0 to 1 

23 

Recommendation on depolarizing channel 

parameter change to achieve security (if not 

already satisfied) 

Text 

24 

Recommendation on depolarizing channel 

parameter change to achieve target key rate (if 

not already achievable) 

Text 

 

Parameters number 1, 2, 3, 5, 7 and 9 are the inputs to EnQuad. Parameters 

number 15, 16 and 17 are the outputs of EnQuad. All parameters are accessible and 

tuneable. Furthermore, as to expanding EnQuad to a wide range of QKD protocols or 
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BB84 variants, EnQuad was built with keeping modularity in our mind, in the sense 

that all functions listed in Table 5 were implemented separately and independently. 

In other words, functions speak with each other only through interfaces. This means 

that the code of any function could be safely edited/replaced as per the developers’ 

prospective QKD setups/protocols (see Section 3. EnQuad settings), with EnQuad 

still perfectly working as long as the interfaces are adjusted accordingly. While 

EnQuad started with the de-facto standards of a QKD protocol, impersonated in 

BB84, we seek for including more scenarios for each function, to expand EnQuad 

usability to BB84 variants such as Decoy-state protocol, SARG04 protocol in 

addition to the quantum entanglement and Bell’s inequality-based protocols [23, 24]. 

With EnQuad parameters and functions listed, a quick live demo is provided in [10]. 

Table 5. EnQuad functions  

No Function 
Interface 

Input Output 

1 EnQuad Main 1, 5, 7 

16, 17,18, 

19, 20, 21, 

22, 23, 24 

2 Polarizer 1, 2, 3 4 

3 Eve’s Intercept and Resend 1, 4, 5 6 

4 Channel 1, 4/6, 7 8 

5 Beam Splitter 8, 9 10 

6 Polarizing Beam Splitter 1, 10 11 

7 SPAD 11 12 

8 Sifting 2, 3, 9 13, 14, 15 

9 

Security Testing and 

Reconciliation Efficiency 

Reporting 

1, 5, 7, 

13 

17, 18, 19, 

20, 21, 22, 

23, 24 
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